27
правок
Изменения
Нет описания правки
{{Определение
|neat=neat
|definition=Граф<ref>На самом деле, ''двойственный граф'' — '''псевдограф''', поскольку в нём могут быть петли и кратные рёбра.</ref> <tex>G'</tex> называется '''двойственным'''(англ. ''dual graph'') к [[Укладка графа на плоскости|планарному графу ]] <tex>G</tex>, если:
# Вершины <tex>G'</tex> соответствуют граням <tex>G</tex>
# Между двумя вершинами в <tex>G'</tex> есть ребро тогда и только тогда, когда соответствующие грани в <tex>G</tex> имеют общее ребро
* Если <tex>G'</tex> — ''двойственный'' к двусвязному графу <tex>G</tex>, то <tex>G</tex> — ''двойственный'' к <tex>G'</tex>
* У одного и того же графа может быть несколько ''двойственных'', в зависимости от конкретной укладки (см. картинку)
* Поскольку любой трёхсвязный планарный граф допускает только одну укладку на сфере<ref>Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009. — Теорема 11.5 — С. 130. — ISBN 978-5-397-00622-4.</ref>, у него должен быть единственный ''двойственный граф''* [[Мост , эквивалентные определения|Мост]] переходит в петлю, а петля — в мост
* Мультиграф, ''двойственный'' к дереву, — цветок
== Самодвойственные графы ==
{{Определение
|definition=Планарный граф называется '''самодвойственным''', если он изоморфен своему двойственному графу.
}}
|neat=neat
|statement=<tex>K_1</tex> и <tex>K_4</tex> — самодвойственные графы. Среди полных графов других самодвойственных нет.
|proof=Проверить, что <tex>K_1</tex> и <tex>K_4</tex> полны и самодвойственны несложно. Докажем, что других нет.<br/>Поскольку грани графа переходят в вершины, количество вершин и граней в исходном графе должно совпадать, т.е. <tex>V = F</tex>.<br/>Подставив в [[Формула Эйлера|формулу Эйлера]] имеем: <tex>2V = E + 2 \Leftrightarrow V = \fracdfrac{E}{2} + 1</tex>.<br/>В полном графе <tex>E = \fracdfrac{V \dot cdot (V - 1)}{2}</tex>.<br/>Получаем квадратное уравнение: <tex>V^2 - 5V + 4 = 0</tex>.<br/>Его решения: <tex>V_1 = 1</tex> и <tex>V_2 = 4</tex>.<br/>Таким образом, чтобы ''полный'' граф был ''самодвойственным'', в нём должна быть ровно '''одна''' или '''четыре''' вершины.
}}
<div style="clear:both;"></div>
== См. также ==
*[[Формула Эйлера]]
*[[Укладка графа на плоскости]]
*[[Гамма-алгоритм]]
== Примечания ==
<references />
== Источники информации==
* [https://ru.wikipedia.org/wiki/%D0%94%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D1%84 Википедия — Двойственный граф]
* [https://ru.wikipedia.org/wiki/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B0%D1%80%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D1%84 Википедия — Планарный граф]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Укладки графов]]