Алгоритм D* — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 32: Строка 32:
  
 
[[Эвристики для поиска кратчайших путей|Эвристическая функция]] <tex>h(s,s')</tex> теперь должна быть неотрицательная и выполнять неравенство треугольника, т.е.  
 
[[Эвристики для поиска кратчайших путей|Эвристическая функция]] <tex>h(s,s')</tex> теперь должна быть неотрицательная и выполнять неравенство треугольника, т.е.  
<tex>h(s_{goal},s_{goal}) = 0</tex> и <tex>h(s, s_{goal}) <= c(s,s') + h(s',s_{goal})</tex> для всех <tex>s \in S</tex> и <tex>s' \in Succ(s)</tex>
+
<tex>h(s_{goal},s_{goal}) = 0</tex> и <tex>h(s, s_{goal}) \leqslant c(s,s') + h(s',s_{goal})</tex> для всех <tex>s \in V</tex> и <tex>s' \in Succ(s)</tex>
  
 
Функция <tex>key(s)</tex>, где <tex>s</tex> - вершина, возвращает вектор из 2-ух значений <tex>k_1(s)</tex>, <tex>k_2(s)</tex>.  
 
Функция <tex>key(s)</tex>, где <tex>s</tex> - вершина, возвращает вектор из 2-ух значений <tex>k_1(s)</tex>, <tex>k_2(s)</tex>.  
Строка 125: Строка 125:
  
 
[[Эвристики для поиска кратчайших путей|Эвристическая функция]] <tex>h(s,s')</tex> теперь должна быть неотрицательная и обратно-устойчивая, т.е.  
 
[[Эвристики для поиска кратчайших путей|Эвристическая функция]] <tex>h(s,s')</tex> теперь должна быть неотрицательная и обратно-устойчивая, т.е.  
<tex>h(s_{start},s_{start}) = 0</tex> и <tex>h(s_{start}, s) <= h(s_{start},s') + c(s',s)</tex> для всех <tex>s \in S</tex> и <tex>s' \in Pred(s)</tex>. Очевидно, что при движении робота <tex>s_{start}</tex> изменяется, поэтому данные свойства должны выполняться для всех <tex>s_{start} \in S</tex>.
+
<tex>h(s_{start},s_{start}) = 0</tex> и <tex>h(s_{start}, s) \leqslant h(s_{start},s') + c(s',s)</tex> для всех <tex>s \in S</tex> и <tex>s' \in Pred(s)</tex>. Очевидно, что при движении робота <tex>s_{start}</tex> изменяется, поэтому данные свойства должны выполняться для всех <tex>s_{start} \in V</tex>.
  
 
Дополнительное условие выхода также меняется, т.е. при <tex>g(s_{start}) = +\infty</tex> путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.
 
Дополнительное условие выхода также меняется, т.е. при <tex>g(s_{start}) = +\infty</tex> путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.
Строка 172: Строка 172:
 
       Передвинулись вдоль найденного пути и изменили вершину <tex>s_{start}</tex>;
 
       Передвинулись вдоль найденного пути и изменили вершину <tex>s_{start}</tex>;
 
       Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним.
 
       Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним.
       if (если граф изменился)
+
       if (граф изменился)
 
         for всех ориентированных ребер <tex>(u; v)</tex> с измененными весами:
 
         for всех ориентированных ребер <tex>(u; v)</tex> с измененными весами:
 
           Обновляем результат функции <tex>c(u; v)</tex>;
 
           Обновляем результат функции <tex>c(u; v)</tex>;
Строка 185: Строка 185:
 
|statement=Функция '''ComputeShortestPath''' в данной версии алгоритма ''расширяет'' вершину максимум 2 раза, а именно 1 раз, если вершина ненасыщена, и максимум 1 раз, если она переполнена.
 
|statement=Функция '''ComputeShortestPath''' в данной версии алгоритма ''расширяет'' вершину максимум 2 раза, а именно 1 раз, если вершина ненасыщена, и максимум 1 раз, если она переполнена.
 
}}
 
}}
 +
 +
== Описание (2 версия) ==
 +
В первой версии алгоритма была серьезная проблема в том, что для каждой вершины в приоритетной очереди нужно было обновлять ключ суммарно за <tex>O(n \cdot log(n))</tex>. Это дорогая операция, так как очередь может содержать огромное число вершин. Воспользуемся оригинальным методом поиска и изменим преобразим основной цикл, чтобы избежать постоянного перестроения очереди <tex>U</tex>.
 +
 +
Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин <tex>s,s',s'' \in V</tex>, т.е. <tex>h(s,s'') \leqslant h(s, s') + h(s',s'')</tex>. Так же должно выполняться свойство <tex>h(s,s') \leqslant c^*(s,s')</tex>, где <tex>c^*(s,s')</tex> - стоимость перехода по кратчайшему пути из <tex>s</tex> в <tex>s'</tex>, при этом <tex>s</tex> и <tex>s'</tex> не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их.
 +
 +
=== Псевдокод (Вторая версия) ===
 +
 +
  '''CalcKey'''(s):
 +
    return [<tex>\min(g(s);rhs(s)) + h(s_{start};s) + K_m</tex>;<tex>\min(g(s); rhs(s))</tex>];
 +
 +
  '''Initialize'''():
 +
    U = <tex>\varnothing</tex>;
 +
    <tex>K_m = 0</tex>
 +
    for <tex>s \in S</tex>
 +
      <tex>rhs(s) = g(s) = +\infty</tex>
 +
    <tex>rhs(s_{goal}) = 0</tex>
 +
    U.Insert(<tex>s_{goal}</tex>; CalcKey(<tex>s_{goal}</tex>));
 +
 +
  '''UpdateVertex'''(u):
 +
    if (<tex>u \ne s_{goal}</tex>)
 +
      rhs(u) = <tex>min_{s' \in Succ(u)}(c(u,s')+g(s'));</tex>
 +
    if (<tex>u \in U</tex>)
 +
      U.Remove(u);
 +
    if (<tex>g(u) \ne rhs(u)</tex>)
 +
      U.Insert(u; CalcKey(u));
 +
 +
  '''ComputeShortestPath'''():
 +
    while (U.TopKey() < CalcKey(<tex>s_{start}</tex>) OR <tex>rhs(s_{start}) \ne g(s_{start})</tex>)
 +
      <tex>K_{old} = U.TopKey()</tex>;
 +
      u = U.Pop();
 +
     
 +
      if (<tex>K_{old}</tex> < CalcKey(<tex>u</tex>))
 +
        U.Insert(<tex>u</tex>;CalcKey(<tex>u</tex>));
 +
     
 +
      if (g(u) > rhs(u))
 +
        g(u) = rhs(u);
 +
        for <tex>s \in Pred(u)</tex>
 +
          UpdateVertex(s);
 +
      else
 +
        g(u) = <tex>+\infty</tex>;
 +
        for <tex>s \in Pred(u) \cup \{u\}</tex>
 +
          UpdateVertex(s);
 +
 +
  '''Main'''():
 +
    <tex>s_{last} = s_{start}</tex>
 +
    '''Initialize'''();
 +
    '''ComputeShortestPath'''();
 +
    while (<tex>s_{start} \ne s_{goal}</tex>)
 +
      // if (<tex>g(s_{start}) = \infty</tex>) тогда путь на данной итерации не найден.
 +
      <tex>s_{start}</tex> = такая вершина s', что <tex>min_{s' \in Succ(s_{start})}(c(s_{start}, s') + g(s'))</tex>
 +
      Передвинулись вдоль найденного пути и изменили вершину <tex>s_{start}</tex>;
 +
      Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним.
 +
      if (граф изменился)
 +
        <tex>K_m = K_m + h(s_{last}, h_{start})</tex>;
 +
        <tex>s_{last} = s_{start}</tex>;
 +
        for всех ориентированных ребер <tex>(u; v)</tex> с измененными весами:
 +
          Обновляем результат функции <tex>c(u; v)</tex>;
 +
          '''UpdateVertex'''(u);
 +
        ComputeShortestPath();
  
 
==Ссылки==
 
==Ссылки==

Версия 19:18, 4 января 2014

Алгоритм D* — алгоритм поиска кратчайшего пути во взвешенном ориентированном графе, где структура графа неизвестна заранее или постоянно подвергается изменению. Разработан Свеном Кёнигом и Максимом Лихачевым в 2002 году.

Алгоритм LPA*

Постановка задачи

Дан взвешенный ориентированный граф [math] G(V, E) [/math]. Даны вершины [math]s_{start}[/math] и [math]s_{goal}[/math]. Требуется после каждого изменения графа [math]G[/math] уметь вычислять функцию [math]g(s)[/math] для каждой известной вершины [math]s \in V[/math]

Описание

Функция [math]g(s)[/math] будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины [math]s_{start}[/math] до [math]s[/math].

Будем поддерживать для каждой вершины два вида смежных с ней вершин:

  • Обозначим множество [math]Succ(s) \in V[/math] как множество вершин, исходящих из вершины [math]s[/math].
  • Обозначим множество [math]Pred(s) \in V[/math] как множество вершин, входящих в вершину [math]s[/math].

Ясно, что обязано соблюдаться условие: [math]Succ(s) \subseteq V[/math] и [math]Pred(s) \subseteq V[/math].

Функция [math]0 \leqslant c(s, s') \leqslant +\infty[/math] будет возвращать стоимость перехода из вершины [math]s[/math] в вершину [math]s'[/math]. При этом [math]s' \in Succ(s)[/math].

Теперь опишем функцию [math]rhs(s)[/math]. Эта функция будет использовать минимальные расстояние из минимальных расстояний от [math]s_{start}[/math] до вершин, входящих в данную вершины [math]s[/math]. Потенциально это и будет нам давать информацию о расстояние от [math]s_{start}[/math] до [math]s[/math]. [math]rhs(s) = \begin{cases} 0,& \text{if } s = s_{start} \\ min_{s' \in Pred(s)}(g(s') + c(s', s),& \text{otherwise} \end{cases} [/math]

Вершина [math]s[/math] может быть 3-х видов:

  • насыщена, если [math]g(s) = rhs(s)[/math]
  • переполнена, если [math]g(s) \gt rhs(s)[/math]
  • ненасыщена, если [math]g(s) \lt rhs(s)[/math]

Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным).

Эвристическая функция [math]h(s,s')[/math] теперь должна быть неотрицательная и выполнять неравенство треугольника, т.е. [math]h(s_{goal},s_{goal}) = 0[/math] и [math]h(s, s_{goal}) \leqslant c(s,s') + h(s',s_{goal})[/math] для всех [math]s \in V[/math] и [math]s' \in Succ(s)[/math]

Функция [math]key(s)[/math], где [math]s[/math] - вершина, возвращает вектор из 2-ух значений [math]k_1(s)[/math], [math]k_2(s)[/math].

  • [math]k_1(s) = \min(g(s), rhs(s)) + h(s, s_{goal})[/math].
  • [math]k_2(s) = \min(g(s), rhs(s))[/math].

Если в конце поиска пути [math]g(s_{goal}) = +\infty[/math], то мы не смогли найти путь от [math]s_{start}[/math] до [math]s_{goal}[/math] на текущей итерации. Но после следующего изменения графа путь вполне может найтись.

Псевдокод

Основная функция, описывающая алгоритм

 Main():
 {
   Initialize();
   while (true)
   {
     ComputeShortestPath();
     В данный момент мы знаем кратчайший путь из [math]s_{start}[/math] в [math]s_{goal}[/math].
     Ждем каких-либо изменений графа.
     for всех ориентированных ребер [math](u; v)[/math] с измененными весами:
     {
       Обновляем результат функции [math]c(u; v)[/math];
       UpdateVertex([math]v[/math]);
     }
   }
 }

Теперь опишем составные элементы подробнее Функция инициализации исходного графа устанавливает для всех вершин кроме стартовой ([math]s_{start}[/math]) значения [math]g(s)[/math] и [math]rhs(s)[/math] равными бесконечности. Для стартовой [math]g(s_{start})=0[/math]. Очевидно, что минимальное расстояние от стартовой вершины до самой себя должно быть равным 0, но [math]rhs(s_{start})=+\infty[/math]. Это сделано для того, чтобы стартовая вершина была ненасыщенной и имела право попасть в приоритетную очередь.

 Initialize():
 {
   //Заведем приоритетную очередь [math]U[/math], в которую будем помещать вершины. Сортировка будет производиться по функции [math]key(s)[/math].
   [math]U = \varnothing;[/math]
   for [math]s \in S[/math]
     [math]rhs(s) = g(s) = \infty;[/math]
   [math]rhs(s_{start}) = 0;[/math]
   U.Insert([math]s_{start}[/math]; CalcKey([math]s_{start}[/math]));
 }


 //Функция [math]key(s)[/math]. Возвращаемые значения сортируются в лексографическом порядке, т.е. сначала [math]k_1(s)[/math], потом [math]k_2(s)[/math]
 CalcKey(s):
 {
   return [[math]\min(g(s); rhs(s)) + h(s; s_{goal})[/math]; [math]\min(g(s); rhs(s))[/math]];
 }
 UpdateVertex([math]u[/math]):
 {
   if ([math]u \ne s_{start}[/math]) 
     [math]rhs(u) = min_{s' \in Pred(u)}(g(s') + c(s',u));[/math]
   if ([math]u \in U[/math])
     U.Remove(u);
   if ([math]g(u) \ne rhs(u)[/math])
     U.Insert([math]u[/math]; CalcKey([math]u[/math]));
 }
 // Функция неоднократно перерасчитывает значение [math]g(s)[/math] у ненасыщенных вершин в неубывающем порядке их ключей. Такой перерасчет значения [math]g(s)[/math] будем называть расширением вершины.
 ComputeShortestPath():
 {
   while (U.TopKey() < CalcKey([math]s_{goal}[/math]) OR rhs([math]s_{goal}) \ne g(s_{goal}[/math]))
     u = U.Pop();
     if (g(u) > rhs(u))
       g(u) = rhs(u);
       for [math]s \in Succ(u)[/math]
         UpdateVertex(s);
     else
       g(u) = [math]+\infty[/math];
       for [math]s \in Succ(u) \cup \{u\}[/math]
         UpdateVertex(s);
 }

Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами [math]s_{start}[/math] и [math]s_{goal}[/math], используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за [math]O(n^2 \cdot log(n))[/math]. Улучшим эту оценку с помощью алгоритма D* lite.

Примечание: на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку [math]O(n \cdot log(n))[/math].

Алгоритм D*

Пока что был описан только алгоритм LPA*. Он способен неоднократно определять кратчайшее расстояние между начальной и конечной вершинами при любом изменении данного графа. Его первоначальный поиск полностью совпадает с алгоритмом A*, но последующие итерации способны использовать информацию из предыдущих поисков.

Постановка задачи

Теперь на основе LPA* опишем алгоритм D*, который способен определять расстояние между текущей вершиной [math]s_{start}[/math], в которой, допустим, находится курсор/робот, и конечной вершиной [math]s_{goal}[/math] при каждом изменении графа в то время, как наш робот движется вдоль найденного пути.

Схема движения курсора/робота в процессе работы алгоритма D*. Информация о серых клетках неизвестна до определенной итерации.

Описание

Опишем первую версию алгоритма D*. Очевидно, что большинство вершин в процессе движения робота остаются неизменными, поэтому мы можем применить алгоритм LPA*.

Примечание: Большинство функций переходят в данный алгоритм без изменений, поэтому опишем только измененные части.

Для начала мы поменяем направление поиска в графе.

Теперь функция g(s) хранит минимальное известное расстояние от [math]s_{goal}[/math] до [math]s[/math]. Свойства остаются прежними.

Эвристическая функция [math]h(s,s')[/math] теперь должна быть неотрицательная и обратно-устойчивая, т.е. [math]h(s_{start},s_{start}) = 0[/math] и [math]h(s_{start}, s) \leqslant h(s_{start},s') + c(s',s)[/math] для всех [math]s \in S[/math] и [math]s' \in Pred(s)[/math]. Очевидно, что при движении робота [math]s_{start}[/math] изменяется, поэтому данные свойства должны выполняться для всех [math]s_{start} \in V[/math].

Дополнительное условие выхода также меняется, т.е. при [math]g(s_{start}) = +\infty[/math] путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.

Примечание: Так же следует отметить, что функция Initialize не обязана инициализировать абсолютно все вершины перед стартом алгоритма. Это важно, так как в на практике число вершин может быть огромным и только немногие будут пройдены робот в процессе движения. Так же это дает возможность добавления/удаления ребер без потери устойчивости всех подграфов данного графа.

Псевдокод (Первая версия)

При такой постановке задачи псевдокод не сильно меняется. Но функция Main все-таки претерпевает значительные изменения.

 CalcKey(s):
   return [[math]\min(g(s);rhs(s)) + h(s_{start};s)[/math];[math]\min(g(s); rhs(s))[/math]];
 Initialize():
   U = [math]\varnothing[/math];
   for [math]s \in S[/math]
     [math]rhs(s) = g(s) = +\infty[/math]
   [math]rhs(s_{goal}) = 0[/math]
   U.Insert([math]s_{goal}[/math]; CalcKey([math]s_{goal}[/math]));
 UpdateVertex(u):
   if ([math]u \ne s_{goal}[/math]) 
     rhs(u) = [math]min_{s' \in Succ(u)}(c(u,s')+g(s'));[/math]
   if ([math]u \in U[/math]) 
     U.Remove(u);
   if ([math]g(u) \ne rhs(u)[/math]) 
     U.Insert(u; CalcKey(u));
 ComputeShortestPath():
   while (U.TopKey() < CalcKey([math]s_{start}[/math]) OR [math]rhs(s_{start}) \ne g(s_{start})[/math])
     u = U.Pop();
     if (g(u) > rhs(u))
       g(u) = rhs(u);
       for [math]s \in Pred(u)[/math] 
         UpdateVertex(s);
     else
       g(u) = [math]+\infty[/math];
       for [math]s \in Pred(u) \cup \{u\}[/math] 
         UpdateVertex(s);
 Main():
   Initialize();
   ComputeShortestPath();
   while ([math]s_{start} \ne s_{goal}[/math])
     // if ([math]g(s_{start}) = \infty[/math]) тогда путь на данной итерации не найден.
     [math]s_{start}[/math] = такая вершина s', что [math]min_{s' \in Succ(s_{start})}(c(s_{start}, s') + g(s'))[/math]
     Передвинулись вдоль найденного пути и изменили вершину [math]s_{start}[/math];
     Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним.
     if (граф изменился)
       for всех ориентированных ребер [math](u; v)[/math] с измененными весами:
         Обновляем результат функции [math]c(u; v)[/math];
         UpdateVertex(u);
       for [math]s \in U[/math]
         U.Update([math]s[/math]; CalcKey([math]s[/math]));
       ComputeShortestPath();
Теорема (Свен Кёниг, Об устойчивой насыщенности вершин):
Функция ComputeShortestPath в данной версии алгоритма расширяет вершину максимум 2 раза, а именно 1 раз, если вершина ненасыщена, и максимум 1 раз, если она переполнена.

Описание (2 версия)

В первой версии алгоритма была серьезная проблема в том, что для каждой вершины в приоритетной очереди нужно было обновлять ключ суммарно за [math]O(n \cdot log(n))[/math]. Это дорогая операция, так как очередь может содержать огромное число вершин. Воспользуемся оригинальным методом поиска и изменим преобразим основной цикл, чтобы избежать постоянного перестроения очереди [math]U[/math].

Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин [math]s,s',s'' \in V[/math], т.е. [math]h(s,s'') \leqslant h(s, s') + h(s',s'')[/math]. Так же должно выполняться свойство [math]h(s,s') \leqslant c^*(s,s')[/math], где [math]c^*(s,s')[/math] - стоимость перехода по кратчайшему пути из [math]s[/math] в [math]s'[/math], при этом [math]s[/math] и [math]s'[/math] не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их.

Псевдокод (Вторая версия)

 CalcKey(s):
   return [[math]\min(g(s);rhs(s)) + h(s_{start};s) + K_m[/math];[math]\min(g(s); rhs(s))[/math]];
 Initialize():
   U = [math]\varnothing[/math];
   [math]K_m = 0[/math]
   for [math]s \in S[/math]
     [math]rhs(s) = g(s) = +\infty[/math]
   [math]rhs(s_{goal}) = 0[/math]
   U.Insert([math]s_{goal}[/math]; CalcKey([math]s_{goal}[/math]));
 UpdateVertex(u):
   if ([math]u \ne s_{goal}[/math]) 
     rhs(u) = [math]min_{s' \in Succ(u)}(c(u,s')+g(s'));[/math]
   if ([math]u \in U[/math]) 
     U.Remove(u);
   if ([math]g(u) \ne rhs(u)[/math]) 
     U.Insert(u; CalcKey(u));
 ComputeShortestPath():
   while (U.TopKey() < CalcKey([math]s_{start}[/math]) OR [math]rhs(s_{start}) \ne g(s_{start})[/math])
     [math]K_{old} = U.TopKey()[/math];
     u = U.Pop();
     
     if ([math]K_{old}[/math] < CalcKey([math]u[/math]))
       U.Insert([math]u[/math];CalcKey([math]u[/math]));
     
     if (g(u) > rhs(u))
       g(u) = rhs(u);
       for [math]s \in Pred(u)[/math] 
         UpdateVertex(s);
     else
       g(u) = [math]+\infty[/math];
       for [math]s \in Pred(u) \cup \{u\}[/math] 
         UpdateVertex(s);
 Main():
   [math]s_{last} = s_{start}[/math]
   Initialize();
   ComputeShortestPath();
   while ([math]s_{start} \ne s_{goal}[/math])
     // if ([math]g(s_{start}) = \infty[/math]) тогда путь на данной итерации не найден.
     [math]s_{start}[/math] = такая вершина s', что [math]min_{s' \in Succ(s_{start})}(c(s_{start}, s') + g(s'))[/math]
     Передвинулись вдоль найденного пути и изменили вершину [math]s_{start}[/math];
     Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним.
     if (граф изменился)
       [math]K_m = K_m + h(s_{last}, h_{start})[/math];
       [math]s_{last} = s_{start}[/math];
       for всех ориентированных ребер [math](u; v)[/math] с измененными весами:
         Обновляем результат функции [math]c(u; v)[/math];
         UpdateVertex(u);
       ComputeShortestPath();

Ссылки