Диаметр множества точек (вращающиеся калиперы) — различия между версиями
Megabyte (обсуждение | вклад) |
Megabyte (обсуждение | вклад) м |
||
Строка 2: | Строка 2: | ||
Есть множество точек на плоскости. Нужно найти две самые удалённые из них. | Есть множество точек на плоскости. Нужно найти две самые удалённые из них. | ||
− | Найдём выпуклую оболочку исходного множества и получим более простую задачу: найти две наиболее удалённые вершины в выпуклом многоугольнике. Сделать это можно за линейное время с помощью метода, который называется '''вращающиеся калиперы''' (англ. ''rotating calipers''). | + | [[Статические выпуклые оболочки: Джарвис, Грэхем, Эндрю, Чен, QuickHull|Найдём выпуклую оболочку]] исходного множества и получим более простую задачу: найти две наиболее удалённые вершины в выпуклом многоугольнике. Сделать это можно за линейное время с помощью метода, который называется '''вращающиеся калиперы''' (англ. ''rotating calipers''). |
== Постановка задачи == | == Постановка задачи == |
Версия 15:57, 8 января 2014
Эта статья находится в разработке!
Есть множество точек на плоскости. Нужно найти две самые удалённые из них.
Найдём выпуклую оболочку исходного множества и получим более простую задачу: найти две наиболее удалённые вершины в выпуклом многоугольнике. Сделать это можно за линейное время с помощью метода, который называется вращающиеся калиперы (англ. rotating calipers).
Постановка задачи
Пусть
— выпуклый многоугольник, в котором порядок обхода вершин направлен против часовой стрелки, и никакие три последовательные точки не лежат на одной прямой. Найти пару чисел , такие, что максимально.Вращающиеся калиперы
Определение: |
Прямая | называется опорной прямой (англ. line of support) для многоугольника , если его внутренность лежит по одну сторону от , при этом проходит хотя бы через одну из вершин .
|
Так как
и — какие угодно граничные точки фигуры , принадлежащие соответственно прямым и , то из перпендикулярности отрезка к прямым и следует, что ни одна из прямых , не может иметь с фигурой целый общий отрезок. Другими словами, каждая из этих прямых содержит единственную граничную точку фигуры .
|
Литература
- M.I. Shamos Computational geometry, 1978 — С. 76.
- Яглом И.М., Болтянский В.Г. Выпуклые фигуры, 1951 — С. 20, 144.