Диагональный метод — различия между версиями
Строка 11: | Строка 11: | ||
|proof = От противного. Пусть <tex>U(n, x)</tex> — всюду определенная вычислимая универсальная функция для класса всюду определенных вычислимых функций одного аргумента. Воспользуемся теперь диагональным методом. Рассмотрим всюду определенную вычислимую функцию одного аргумента <tex>d(x) = U(x, x) + 1</tex>. <tex>\exists n \in N : d(x) = U(n, x)</tex> в силу того, что <tex>U(n, x)</tex> — универсальная для соответствующего класса функций. Так как <tex>d(x)</tex> всюду определена, то она не зависает на аргументе <tex>n</tex>. Значит <tex>d(n) = U(n, n)</tex>, но в то же время <tex>d(n) = U(n, n) + 1</tex>. Противоречие. | |proof = От противного. Пусть <tex>U(n, x)</tex> — всюду определенная вычислимая универсальная функция для класса всюду определенных вычислимых функций одного аргумента. Воспользуемся теперь диагональным методом. Рассмотрим всюду определенную вычислимую функцию одного аргумента <tex>d(x) = U(x, x) + 1</tex>. <tex>\exists n \in N : d(x) = U(n, x)</tex> в силу того, что <tex>U(n, x)</tex> — универсальная для соответствующего класса функций. Так как <tex>d(x)</tex> всюду определена, то она не зависает на аргументе <tex>n</tex>. Значит <tex>d(n) = U(n, n)</tex>, но в то же время <tex>d(n) = U(n, n) + 1</tex>. Противоречие. | ||
}} | }} | ||
+ | Отметим, что функция <tex>u(n) = U(n, n)</tex> называется диагональной функцией (отсюда и пошло название метода). | ||
== Литература == | == Литература == | ||
[http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf ''Н. К. Верещагин, А. Шень.'' '''Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции.''' — М.: МЦНМО, 1999, с. 16] | [http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf ''Н. К. Верещагин, А. Шень.'' '''Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции.''' — М.: МЦНМО, 1999, с. 16] |
Версия 14:30, 13 января 2014
Определение: |
Функция вычислимых функций одного аргумента, если является вычислимой функцией и вычислимой функции | называется универсальной (universal function) для класса
Аналогично определяется универсальная функция для класса всюду определенных вычислимых функций одного аргумента.
Теорема: |
Для класса вычислимых функций одного аргумента существует вычислимая универсальная функция. |
Доказательство: |
Занумеруем программы нашего языка натуральными числами. Рассмотрим функцию | , где — -ая программа в указанной нумерации. вычислимой функции . , очевидно, является вычислимой функцией. Значит — универсальная функция для класса вычислимых функций одного аргумента. Очевидно, что вычислима. Действительно, для того, чтобы вычислить , достаточно вернуть вывод программы на входе .
Теорема: |
Для класса всюду определенных вычислимых функций одного аргумента не существует всюду определенной вычислимой универсальной функции. |
Доказательство: |
От противного. Пусть | — всюду определенная вычислимая универсальная функция для класса всюду определенных вычислимых функций одного аргумента. Воспользуемся теперь диагональным методом. Рассмотрим всюду определенную вычислимую функцию одного аргумента . в силу того, что — универсальная для соответствующего класса функций. Так как всюду определена, то она не зависает на аргументе . Значит , но в то же время . Противоречие.
Отметим, что функция
называется диагональной функцией (отсюда и пошло название метода).Литература
В. А. Успенский Лекции о вычислимых функциях — М.: ГИФМЛ, 1960, с. 203