Примеры неразрешимых задач: задача о замощении — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Постановка задачи)
Строка 22: Строка 22:
 
[[file:Tiling_example.png|300px]]
 
[[file:Tiling_example.png|300px]]
  
== Постановка задачи ==
+
== Замощение четверти плоскости ==
 
Пусть даны некоторые типы полимино, причем экземпляров каждого типа дается бесконечно много.
 
Пусть даны некоторые типы полимино, причем экземпляров каждого типа дается бесконечно много.
 
Верно ли, что используя любое количество полимино можно полностью замостить без пропусков и выступов четверть плоскости? Поворачивать полимино не разрешено.
 
Верно ли, что используя любое количество полимино можно полностью замостить без пропусков и выступов четверть плоскости? Поворачивать полимино не разрешено.
Строка 85: Строка 85:
 
}}
 
}}
  
 +
== Замощение половины плоскости ==
 +
 +
{{Теорема
 +
|statement=
 +
Задача о замощении половины плоскости полимино неразрешима.
 +
|proof=
 +
Будем действовать также как и предыдущем доказательстве, только одновременно будем строить еще и зеркально отраженные полимино так, чтобы их нельзя было никак соединить с изначальными.
 +
 +
Например, можно покрасить стороны новых полимино в другой цвет и ввести правило, по которому можно соединять полимино, только если цвета их общей стороны совпадают.
 +
 +
[[Файл:Polyomino_bad_case.png]]
 +
 +
Сделаем так для всех полимино кроме первого ряда. Для него добавим специальное соединение, к которому подходит только зеркально отраженное полимино.
 +
 +
[[Файл:Polyomino_init_2.png]]
 +
 +
}}
 +
 +
== Замощение целой плоскости ==
 +
 +
{{Теорема
 +
|statement=
 +
Задача о замощении половины плоскости полимино неразрешима.
 +
|proof=
 +
Аналогично замощению половины плоскости.
 +
}}
 
== Ссылки ==
 
== Ссылки ==
 
* [http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B8%D0%BD%D0%BE Полимино — Википедия]
 
* [http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B8%D0%BD%D0%BE Полимино — Википедия]
 
* [https://www.cs.duke.edu/courses/fall08/cps234/projects/tilings.pdf The tiling problem]
 
* [https://www.cs.duke.edu/courses/fall08/cps234/projects/tilings.pdf The tiling problem]
 
* [http://www.univ-orleans.fr/lifo/Members/Nicolas.Ollinger/talks/2008/03/turku.pdf The domino problem]
 
* [http://www.univ-orleans.fr/lifo/Members/Nicolas.Ollinger/talks/2008/03/turku.pdf The domino problem]

Версия 17:00, 15 января 2014


Определения

Определение:
Полимино (полиомино, polyomino) - плоская геометрическая фигура, состоящая из [math]n[/math] одноклеточных квадратов, соединенных по сторонам.
Polyomino example.png


Определение:
Замощение плоскости (tiling) - представление плоскости в виде множества непересекающихся полимино.

Пусть дана плоскость [math]S[/math] и набор полимино [math]P[/math], если [math]\exists ~ f: N \times N \to P[/math] (говорящая по клетке, какому полимино она соответствует) тогда считается, что можно замостить плоскость [math]S[/math] данным набором.


Определение:
[math]Tiling_n = \{(P_1, P_2,..., P_k) ~ | ~ \frac{1}{n}[/math] плоскости можно замостить[math]\}[/math].

Tiling example.png

Замощение четверти плоскости

Пусть даны некоторые типы полимино, причем экземпляров каждого типа дается бесконечно много. Верно ли, что используя любое количество полимино можно полностью замостить без пропусков и выступов четверть плоскости? Поворачивать полимино не разрешено.

Теорема:
Задача о замощении четверти плоскости полимино неразрешима.
Доказательство:
[math]\triangleright[/math]

Сведём задачу останова к данной задаче. Пусть дана машина Тьюринга [math]M =\langle \Sigma, Q, \Pi, B \in \Pi, s,\delta: Q \times \Pi \rightarrow Q \times \Pi \times \{ \leftarrow, \downarrow, \rightarrow \} \rangle[/math] и слово [math]w \in \Sigma^*[/math]. Требуется определить, остановится ли данная МТ на входе [math]w[/math].

Будем эмулировать процесс выполнения МТ путем построения вертикальных рядов, каждый из которых эквивалентен конфигурации МТ на определенном этапе выполнения. Первый ряд заполняется начальной конфигурацией, а каждый следующий ряд соответствует следующей конфигурации.

Polyomino init.png

Теперь на основе заданной МТ будем строить набор полимино, которые будут иметь следующий вид:

Polyomino gen.png

На каждой стороне такого полимино находится определенное число выступов/впадин. Каждому символу из алфавита, состоянию и паре из состояния и символа сопоставим некоторое уникальное число (можно ограничить [math]k \le |\Pi| + |Q| + |\Pi \times Q| + 1[/math]) – это и будет количество выступов/впадин находящихся на одной стороне полимино.


Сначала построим набор полимино, который задаёт начальную конфигурацию:

Polyomino start.png

где [math]*[/math] – уникальные числа для каждых соседних двух полимино из начальной конфигурации. Первое полимино характеризует начальное состояние, последующие за ним кодируют входное слово, и завершающее полимино требуется для корректного замощения оставшейся части ряда.

Далее строим полимино для всех элементов алфавита [math]c \in \Pi[/math]:

Polyomino alph.png

В нем количество впадин слева равно количеству выступов справа. Такой тип полимино передает содержимое ленты МТ следующему ряду.

Теперь построим полимино для функции перехода [math]\delta (a, c) = \langle p, d, D \rangle [/math], где [math]q \in Q, p \in Q, c \in \Pi, d \in \Pi, D\in \{\leftarrow, \downarrow, \rightarrow \}[/math]:

Polyomino delta.png

На рисунке изображены (сверху вниз) полимино соответствующие значениям [math]D = \{\leftarrow, \downarrow, \rightarrow \}[/math]. Вместе со следующим типом они эмулируют перемещение головки МТ.

Далее построим следующий тип полимино:

Polyomino delta2.png

Эти полимино получают на вход символ алфавита [math]c[/math] от предыдущего ряда и состояние [math]p[/math] от соседнего полимино, а затем передает следующему ряду пару из состояния и символа.


Построим последний тип полимино, характеризующие состояния [math]\#_Y[/math] и [math]\#_N[/math]:

Polyomino halt.png

Такое полимино имеет уникальное число выступов справа. Ни одно другое полимино из полученного набора не сможет к нему присоединиться, и процесс дальнейшего замощения будет невозможен.


Полученный алгоритм сведения получает на вход МТ и слово, а на выход выдает соответствующий им набор полимино.

Таким образом, четверть плоскости можно замостить тогда и только тогда, когда закодированная МТ не останавливается на данном входе. Иными словами есть бесконечное количество конфигураций, не переходящих в конечное состояние. Это значит, что мы сможем замощать плоскость ряд за рядом бесконечное количество раз, что в результате замостит плоскость.

Если же МТ остановится, то и замостить четверть плоскости мы не сможем из-за того, что конечное полимино не имеет продолжения. Значит задача о замощении полимино не разрешима.
[math]\triangleleft[/math]

Замощение половины плоскости

Теорема:
Задача о замощении половины плоскости полимино неразрешима.
Доказательство:
[math]\triangleright[/math]

Будем действовать также как и предыдущем доказательстве, только одновременно будем строить еще и зеркально отраженные полимино так, чтобы их нельзя было никак соединить с изначальными.

Например, можно покрасить стороны новых полимино в другой цвет и ввести правило, по которому можно соединять полимино, только если цвета их общей стороны совпадают.

Polyomino bad case.png

Сделаем так для всех полимино кроме первого ряда. Для него добавим специальное соединение, к которому подходит только зеркально отраженное полимино.

Polyomino init 2.png
[math]\triangleleft[/math]

Замощение целой плоскости

Теорема:
Задача о замощении половины плоскости полимино неразрешима.
Доказательство:
[math]\triangleright[/math]
Аналогично замощению половины плоскости.
[math]\triangleleft[/math]

Ссылки