Универсальная функция — различия между версиями
(→Главная нумерация) |
|||
Строка 28: | Строка 28: | ||
===Главная нумерация=== | ===Главная нумерация=== | ||
{{Определение | {{Определение | ||
− | |definition=Нумерация, заданная двуместной универсальной функцией <tex>U(n,x)</tex> называется главной (Гёделевой), если для любой двуместной вычислимой функции <tex>V(n,x)</tex> существует вычислимая, всюду определенная функция <tex>S:\mathbb{N}\rightarrow\mathbb{N}</tex> такая, что <tex>V(n,x)=U(S(n),x)</tex>. | + | |definition=Нумерация, заданная двуместной универсальной функцией <tex>U(n,x)</tex> называется главной (Гёделевой)(Godel numbering), если для любой двуместной вычислимой функции <tex>V(n,x)</tex> существует вычислимая, всюду определенная функция <tex>S:\mathbb{N}\rightarrow\mathbb{N}</tex> такая, что <tex>V(n,x)=U(S(n),x)</tex>. |
}} | }} | ||
{{Теорема | {{Теорема | ||
Строка 34: | Строка 34: | ||
|proof=Рассмотрим универсальную функцию, построенную ранее, и нумерацию, соответствующую ей. Обозначим программу, вычисляющую функцию <tex>V(n,x)</tex> как <tex>v(n,x)</tex>. Построим программу (назовем ее <tex>s</tex>) с одним параметром - <tex>m</tex>, которая генерирует код программы <tex>v(n,x)</tex>, но с фиксированным <tex>n = m</tex>, и возвращает ее номер в заданной нумерации. Построенная программа вычисляет искомую функцию для универсальной двуместной функции <tex>U</tex> и двуместной функции <tex>V</tex>, то есть <tex>V(n,x)=U(S(n),x)</tex>, где <tex>S</tex> - функция, вычисляемая программой <tex>s</tex>. Из вычислимости <tex>v</tex> следует существование <tex>V</tex>, и за конечное время мы можем вернуть номер любой программы в выбранной нумерации. Таким образом <tex>S</tex> - вычислимая, всюду определенная. | |proof=Рассмотрим универсальную функцию, построенную ранее, и нумерацию, соответствующую ей. Обозначим программу, вычисляющую функцию <tex>V(n,x)</tex> как <tex>v(n,x)</tex>. Построим программу (назовем ее <tex>s</tex>) с одним параметром - <tex>m</tex>, которая генерирует код программы <tex>v(n,x)</tex>, но с фиксированным <tex>n = m</tex>, и возвращает ее номер в заданной нумерации. Построенная программа вычисляет искомую функцию для универсальной двуместной функции <tex>U</tex> и двуместной функции <tex>V</tex>, то есть <tex>V(n,x)=U(S(n),x)</tex>, где <tex>S</tex> - функция, вычисляемая программой <tex>s</tex>. Из вычислимости <tex>v</tex> следует существование <tex>V</tex>, и за конечное время мы можем вернуть номер любой программы в выбранной нумерации. Таким образом <tex>S</tex> - вычислимая, всюду определенная. | ||
}} | }} | ||
+ | |||
== Литература == | == Литература == | ||
[http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf ''Н. К. Верещагин, А. Шень.'' '''Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции.''' — М.: МЦНМО, 1999, с. 16] | [http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf ''Н. К. Верещагин, А. Шень.'' '''Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции.''' — М.: МЦНМО, 1999, с. 16] |
Версия 23:33, 16 января 2014
Содержание
Определение универсальной функции
В этом разделе равенство двух вычислимых функций при заданных аргументах понимается в том смысле, что при этих аргументах вычисляющие программы для этих функций зависают, либо равны значения, возвращаемые ими.
Определение: |
Функция вычислимых функций одного аргумента, если является вычислимой функцией и вычислимой функции | называется универсальной (universal function) для класса
Менее формально, для универсальной функции должно выполняться следующее: "сечение" функции
является вычислимой функцией и все вычислимые функции одного аргумента встречаются среди (отсюда универсальность). Универсальная функция нужна, например, для того, чтобы показать, что существует перечислимое неразрешимое множество (на самом деле это множество таких , для которых определено).Аналогично определяется универсальная функция для класса всюду определенных вычислимых функций одного аргумента.
Существование универсальной функции
Теорема: |
Существует универсальная функция |
Доказательство: |
Зафиксируем какой-либо язык программирования. Пусть программами на этом языке являются слова над алфавитом | . Программа будет иметь номер , если ее код - -е слово среди всех слов над алфавитом , отсортированных сначала по возрастанию длины, а при равной длине - в лексикографическом порядке. При этом если -я программа не компилируется, будем считать, что она всегда зависает. Рассмотрим функцию такую, что , где - -я программа. Заметим, что по определению вычислимой функции существует программа, вычисляющая ее. Но в заданной нумерации у любой программы есть номер. Таким образом для любой вычислимой функции существует номер . И наоборот - - является вычислимой функцией. Вычисляющая программа для содержит интерпретатор для зафиксированного языка программирования, по номеру программы (первый аргумент) восстанавливает ее код, и передает ей второй аргумент, возвращая результат ее работы. Таким образом - вычислима для любого , и , - вычислима, значит U(n,x) - универсальная функция.
Вычислимость универсальной функции
Теорема: |
Для класса вычислимых функций одного аргумента существует вычислимая универсальная функция. |
Доказательство: |
Занумеруем программы нашего языка натуральными числами. Рассмотрим функцию | , где — -ая программа в указанной нумерации. вычислимой функции . , очевидно, является вычислимой функцией. Значит — универсальная функция для класса вычислимых функций одного аргумента. Очевидно, что вычислима. Действительно, для того, чтобы вычислить , достаточно вернуть вывод программы на входе .
Теорема: |
Для класса всюду определенных вычислимых функций одного аргумента не существует всюду определенной вычислимой универсальной функции. |
Доказательство: |
От противного. Пусть | — всюду определенная вычислимая универсальная функция для класса всюду определенных вычислимых функций одного аргумента. Воспользуемся теперь диагональным методом. Рассмотрим всюду определенную вычислимую функцию одного аргумента . в силу того, что — универсальная для соответствующего класса функций. Так как всюду определена, то она не зависает на аргументе . Значит , но в то же время . Противоречие.
Отметим, что функция
называется диагональной (отсюда и пошло название метода).
Главная нумерация
Определение: |
Нумерация, заданная двуместной универсальной функцией | называется главной (Гёделевой)(Godel numbering), если для любой двуместной вычислимой функции существует вычислимая, всюду определенная функция такая, что .
Теорема: |
Существует главная нумерация. |
Доказательство: |
Рассмотрим универсальную функцию, построенную ранее, и нумерацию, соответствующую ей. Обозначим программу, вычисляющую функцию | как . Построим программу (назовем ее ) с одним параметром - , которая генерирует код программы , но с фиксированным , и возвращает ее номер в заданной нумерации. Построенная программа вычисляет искомую функцию для универсальной двуместной функции и двуместной функции , то есть , где - функция, вычисляемая программой . Из вычислимости следует существование , и за конечное время мы можем вернуть номер любой программы в выбранной нумерации. Таким образом - вычислимая, всюду определенная.
Литература
В. А. Успенский Лекции о вычислимых функциях — М.: ГИФМЛ, 1960, с. 203