Триангуляция Делоне — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Вставка точки)
м (Существование триангуляции Делоне)
Строка 69: Строка 69:
 
Подразбиение Делоне существует, причём для каждого набора точек оно единственно.
 
Подразбиение Делоне существует, причём для каждого набора точек оно единственно.
 
|proof=
 
|proof=
Спроецируем все точки на параболоид и построим выпуклую оболочку. По лемме очевидно, что внутри окружностей, описанных вокруг проекций граней выпуклой оболочки, не будет лежать никаких точек. Значит, проекции граней — фигуры подразбиения Делоне. Значит, такое подразбиение существует.  
+
Спроецируем все точки на параболоид и построим выпуклую оболочку.
 +
 
 +
Все грани выпуклой оболочки окажутся внутри параболоида из-за его выпуклости. При этом точки лежат на параболоиде. Поэтому не найдётся точек, которые будут лежать за гранями выпуклой оболочки. То есть все точки, спроецированные на параболоид, будут принадлежать выпуклой оболочке.
 +
 
 +
По лемме очевидно, что внутри окружностей, описанных вокруг проекций граней выпуклой оболочки, не будет лежать никаких точек. Значит, проекции граней — фигуры подразбиения Делоне. Значит, такое подразбиение существует.  
  
 
Из единственности выпуклой оболочки следует, что такое подразбиение единственно.
 
Из единственности выпуклой оболочки следует, что такое подразбиение единственно.

Версия 16:45, 20 февраля 2014

Конспект написан не до конца, но основные вещи уже есть.
nothumb
НЯ!
Эта статья полна любви и обожания.
Возможно, стоит добавить ещё больше?

Определение

Определение:
Подразбиение Делоне — такое разбиение плоскости на множество выпуклых фигур, что в окружности, описанной вокруг любой из фигур, не находится никаких точек.


Определение:
Триангуляция Делоне — триангуляция, являющаяся подразбиением Делоне.

Существование триангуляции Делоне

Лемма:
Окружность, спроецированная на параболоид, находится в одной плоскости. Все точки, лежащие внутри окружности, будут лежать под этой плоскостью. Точки, лежащие вне окружности, будут лежать над плоскостью.
Доказательство:
[math]\triangleright[/math]

Докажем данное утверждение для n-мерного случая.

Возьмём [math]a_1, a_2, ..., a_{n+1}[/math] афинно независимых точек и опишем вокруг них окружность с центром в точке [math]O[/math] и радиусом [math]R[/math]. Возьмём произвольную точку [math]x[/math], лежащую на расстоянии [math]tR[/math] от [math]O[/math], и посмотрим, как параметр [math]t[/math] влияет на положение её проекции на параболоид.

Представим [math]\vec{a_i}[/math] как [math]\vec O + \vec{r_i}[/math], а [math]\vec x[/math] — как [math]\vec O + \vec{r_x}[/math]. Тогда проекции точек на параболоид будут выглядеть так:

[math](\vec O + \vec{r_i}, (\vec O + \vec{r_i})^2) = (\vec O + \vec{r_i}, \vec O^2 + \vec{r_i}^2 + 2\vec O \vec {r_i}) = (\vec O + \vec{r_i}, \vec O^2 + R^2 + 2\vec O \vec {r_i})[/math]

[math](\vec O + \vec{r_x}, (\vec O + \vec{r_x})^2) = (\vec O + \vec{r_x}, \vec O^2 + \vec{r_x}^2 + 2\vec O \vec {r_x}) = (\vec O + \vec{r_x}, \vec O^2 + (tR)^2 + 2\vec O \vec {r_x})[/math]

Так как [math]\{r_i\}[/math] афинно независимы, то [math]r_x[/math] можно представить как [math]r_x = \sum_{i=1}^{n+1}\alpha_i r_i[/math], причём [math]\sum_{i=1}^{n+1}\alpha_i = 1[/math].

Запишем определитель, показывающий положение точки [math]x[/math] на параболоиде относительно плоскости, заданной точками [math]\{a_i\}[/math]:

[math] \begin{vmatrix} O + r_1 & O^2 + R^2 + 2Or_1 & 1 \\ \vdots & \vdots & \vdots \\ O + r_{n+1} & O^2 + R^2 + 2Or_{n+1} & 1 \\ O + r_x & O^2 + (tR)^2 + 2Or_x & 1 \end{vmatrix} [/math]

Умножим первые [math]n+1[/math] строк на [math]\alpha_i[/math] и вычтем из последней:

[math] \begin{vmatrix} O + r_1 & O^2 + R^2 + 2Or_1 & 1 \\ \vdots & \vdots & \vdots \\ O + r_{n+1} & O^2 + R^2 + 2Or_{n+1} & 1 \\ r_x - \sum_{i=1}^{n+1}\alpha_i r_i & (tR)^2 - R^2 + 2O(r_x - \sum_{i=1}^{n+1}\alpha_i r_i) & 0 \end{vmatrix} = \begin{vmatrix} O + r_1 & O^2 + R^2 + 2Or_1 & 1 \\ \vdots & \vdots & \vdots \\ O + r_{n+1} & O^2 + R^2 + 2Or_{n+1} & 1 \\ 0 & R^2(t^2 - 1) & 0 \end{vmatrix} = R^2(t^2-1) \begin{vmatrix} O + r_1 & 1 \\ \vdots & \vdots \\ O + r_{n+1} & 1 \end{vmatrix} [/math]

Из определителя видно, что знак определителя зависит от ориентации исходных точек [math]\{a_i\}[/math] и от знака [math]t^2-1[/math]. Для определённости будем считать, что точки [math]\{a_i\}[/math] ориентированы так, что предикат поворота положителен. Тогда если [math]t \gt 1[/math] (точка [math]x[/math] лежит вне окружности), то определитель положителен, то есть точка [math]x[/math] лежит выше плоскости, заданной точками [math]\{a_i\}[/math]. Если же [math]t \lt 1[/math] (точка [math]x[/math] лежит внутри окружности), то определитель отрицателен, и точка [math]x[/math] лежит ниже плоскости. Если же точка лежит на окружности, то она попадает на ту же плоскость.
[math]\triangleleft[/math]
Теорема:
Подразбиение Делоне существует, причём для каждого набора точек оно единственно.
Доказательство:
[math]\triangleright[/math]

Спроецируем все точки на параболоид и построим выпуклую оболочку.

Все грани выпуклой оболочки окажутся внутри параболоида из-за его выпуклости. При этом точки лежат на параболоиде. Поэтому не найдётся точек, которые будут лежать за гранями выпуклой оболочки. То есть все точки, спроецированные на параболоид, будут принадлежать выпуклой оболочке.

По лемме очевидно, что внутри окружностей, описанных вокруг проекций граней выпуклой оболочки, не будет лежать никаких точек. Значит, проекции граней — фигуры подразбиения Делоне. Значит, такое подразбиение существует.

Из единственности выпуклой оболочки следует, что такое подразбиение единственно.
[math]\triangleleft[/math]

Критерий Делоне для рёбер

Определение:
Критерий Делоне для ребра: на ребре можно построить такую окружность, что внутри неё не будет лежать никаких точек.
Лемма:
Триангуляции Делоне принадлежат те и только те рёбра (с поправкой на точки, лежащие на одной окружности), которые удовлетворяют критерию Делоне.
Доказательство:
[math]\triangleright[/math]
Для рёбер AB и CD выполняется критерий Делоне, на них построены окружности

То, что для рёбер, принадлежащих триангуляции Делоне, выполняется критерий Делоне для рёбер, очевидно (вокруг каждого ребра можно описать окружность, проходящую через противолежащую ему точку в смежном треугольнике, причём в окружности не будет никаких точек по критерию Делоне).

Докажем, что если для ребра выполняется критерий Делоне, то оно принадлежит триангуляции Делоне.

Предположим, что это ребро (назовём его [math]AB[/math]) не принадлежит триангуляции Делоне. Тогда существует пересекающее его ребро [math]CD[/math], принадлежащее триангуляции. Рассмотрим четырёхугольник [math]ACBD[/math]. Точки [math]C[/math] и [math]D[/math] лежат вне окружности, построенной на [math]AB[/math] как на хорде, поэтому сумма углов [math]C[/math] и [math]D[/math] меньше 180°. Аналогичным образом доказывается, что сумма углов [math]A[/math] и [math]B[/math] тоже меньше 180°. Значит, сумма углов четырёхугольника [math]ACBD[/math] меньше 360°, что невозможно. Противоречие. Значит, ребро [math]AB[/math] принадлежит триангуляции Делоне.
[math]\triangleleft[/math]

Локальный критерий Делоне

Определение:
Локальный критерий Делоне: для пары треугольников, которым принадлежит это ребро, выполняется критерий Делоне (то есть вершина, противолежащая ребру в одном треугольнике, не лежит в окружности, описанной вокруг другого, и наоборот).

Будем называть хорошими те рёбра, для которых выполняется локальный критерий Делоне.

Лемма:
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
Доказательство:
[math]\triangleright[/math]
Рёбра AB и BC плохие
Предположим, что это не так, то есть оба ребра (назовём их [math]AB[/math] и [math]CD[/math]) плохие. Рассмотрим четырёхугольник [math]ACBD[/math] и окружность, описанную вокруг треугольника [math]ABC[/math]. Точка [math]D[/math] лежит внутри этой окружности, значит, сумма углов [math]C[/math] и [math]D[/math] больше 180°. Аналогично доказывается, что сумма углов [math]A[/math] и [math]B[/math] больше 180°. Значит, сумма углов четырёхугольника [math]ACBD[/math] больше 360°, что невозможно.
[math]\triangleleft[/math]
Лемма:
Если для всех рёбер выполняется локальный критерий Делоне, то выполняется и глобальный критерий Делоне.
Доказательство:
[math]\triangleright[/math]
Все рёбра треугольника хорошие, но описанная окружность содержит точки

Предположим, что это не так, то есть все рёбра хорошие, но существуют треугольники, описанная окружность которых содержат какие-либо точки триангуляции. Возьмём какую-либо конфликтную точку [math]E[/math]. Рассмотрим такой треугольник [math]ABC[/math] из тех, в описанную окружность которых попадает [math]E[/math], что угол [math]BEC[/math] максимален, если [math]BC[/math] — ближайшая к точке [math]E[/math] сторона. Пусть треугольник [math]BDC[/math] — смежный с [math]ABC[/math]. Очевидно, что угол [math]BED[/math] больше, чем угол [math]BEC[/math]. При этом точка [math]E[/math] лежит в окружности, описанной вокруг [math]BDC[/math] (

TODO: Почему?). Значит, при выборе треугольника нужно было взять не [math]ABC[/math], а [math]BDC[/math]. Противоречие.
[math]\triangleleft[/math]

Динамическая триангуляция

Определение:
Для пары смежных треугольников flip — убирание смежного ребра и проведение другого.


Красное ребро — до флипа, синее — после

Из леммы следует, что если ребро плохое, то флип сделает его хорошим.

Лемма:
Флипами можно достичь хорошей триангуляции за конечное время.
Доказательство:
[math]\triangleright[/math]
Очевидно, потому что каждый флип уменьшает разность объёмов параболоида и триангуляции, спроецированной на него.
[math]\triangleleft[/math]
Лемма:
Если в триангуляцию Делоне вставить точку в некоторый треугольник и соединить его вершины с этой точкой, то получившиеся рёбра будут хорошими.
Доказательство:
[math]\triangleright[/math]
Точка V вставлена в треугольник ABC

Предположим, точка была вставлена не на ребро. Рассмотрим любое из рёбер — пусть это будет ребро [math]VC[/math]. Проведём окружность, описывающую треугольник [math]ABC[/math]. По критерию Делоне в ней не будет никаких точек триангуляции. На ребре [math]VC[/math] можно построить окружность, изнутри касающуюся окружность, описанную вокруг треугольника. В ней тоже нет никаких точек. Значит, для [math]VC[/math] выполняется критерий Делоне для рёбер, значит, ребро должно принадлежать триангуляции с добавленной точкой [math]V[/math], значит, оно хорошее.

Случай, когда точка вставляется на ребро, рассматривается аналогично.
[math]\triangleleft[/math]

Вставка точки

Вставка точки, лежащей внутри триангуляции

Вставка в треугольник
Вставка на ребро

Для начала локализуемся: поймём, в каком фейсе лежит точка (или на каком ребре).

Если точка лежит внутри фейса, добавляем три ребра, сам фейс превращаем в один из новых смежных с вставляемой точкой и добавялем ещё два фейса.

Если же точка лежит на ребре, два смежных с ребром фейса превращаем в два новых, добавляем ещё два, а так же превращаем ребро, на которое вставляется точка, в ребро, которое заканчивается в этой точке, и вставляем три новых.

Итого у нас появилось несколько новых рёбер. Они все хорошие (по лемме), плохими могут оказаться только рёбра, противолежащие вставленной точке. Флипаем рёбра, пока триангуляция не станет хорошей.

Вставка точки, лежащей снаружи триангуляции

Представим, что вне триангуляции — бесконечные треугольники, основания которых — рёбра выпуклой оболочки триангуляции, а противолежащая ребру вершина — это бесконечно удалённая точка. Тогда понятно, что вставка точки, не лежащей в триангуляции, сведётся к вставке точки внутрь триангуляции, если мы научимся обрабатывать бесконечные фейсы.


TODO: Определение бесконечно удалённой точки

TODO: Определение принадлежности точки бесконечному треугольнику

TODO: Определение, является ли хорошим ребро, инцидентное бесконечно удалённой точке

Время работы

Лемма:
При вставке точки будут флипаться только рёбра, противолежащие вставленной точке.
Доказательство:
[math]\triangleright[/math]
TODO: Написать доказательство
[math]\triangleleft[/math]
Теорема:
При вставке точки в триангуляцию Делоне придётся сделать [math]O(1)[/math] флипов.
Доказательство:
[math]\triangleright[/math]
Все флипнутые рёбра окажутся инцидентными вставленной точке, а степень вершины — [math]O(1)[/math]. Поэтому будет сделано [math]O(1)[/math] флипов.
[math]\triangleleft[/math]

Так как среднее число флипов — [math]O(1)[/math], то время вставки целиком зависит от времени локализации.

Удаление точки

При удалении точки получится звёздный многоугольник, который можно затриангулировать за линию. Дальше по традиции флипаем всё, что могло стать плохим, пока не получим хорошую триангуляцию.

Средняя степень вершины в триангуляции — [math]O(1)[/math], поэтому триангуляция звёздного многоугольника будет тоже за [math]O(1)[/math]. С флипами всё тоже, в общем-то, хорошо. Итого удаление точки работает за [math]O(1)[/math].

Локализационная структура

Cтруктура

Локализационная структура состоит из нескольких уровней, где каждый уровень — это триангуляция Делоне. На нижнем уровне содержатся все точки. Каждая точка с вероятностью [math]p[/math] проходит на следующий уровень (причём если точка — единственная на последнем уровне, то дальше она не пройдёт).

Уровни связаны между собой следующим образом: на уровне [math]i[/math] каждая точка содержит указатель на себя же на уровне [math]i-1[/math].

Алгоритм локализации

Как происходит локализация: нам дают точку [math]v_{i+1}[/math], которая на предыдущем уровне была ближайшей к точке [math]q[/math], которую мы локализуем. Нужно получить следующую точку [math]v_i[/math], которая будет ближайшей уже на этом уровне. Делается это следующим образом:

  • Находим, в каком из треугольников, смежных с [math]v_{i+1}[/math], лежит отрезок [math]v_{i+1} q[/math]
  • Находим, какие рёбра треугольников пересекает [math]v_{i+1} q[/math], в итоге находим треугольник, в котором лежит [math]q[/math]
  • Находим ближайшую к [math]q[/math] точку. Первым кандидатом на то, чтобы быть ближайшей точкой, становится ближайшая к [math]q[/math] вершина найденного в предыдущем пункте треугольника. Для каждого кандидата нужно просмотреть смежные вершины в поиске точки, которая находится ближе к [math]q[/math] — эта точка становится следующим кандидатом. Если же среди соседей точки не нашлось более близких, значит, эта точка и есть ближайшая.

Корректность алгоритма

Теорема:
Данный алгоритм найдёт ближайшую точку.
Доказательство:
[math]\triangleright[/math]
Ребро vv' должно принадлежать триангуляции
Предположим, что это не так. Назовём локализуемую точку [math]q[/math], а последнего кандидата на то, чтобы быть ближайшей точкой — [math]v[/math]. Раз эта точка на самом деле не ближайшая, то в окружности, проходящей через [math]v[/math], с центром в точке [math]q[/math] найдутся ещё какие-то точки, не смежные с [math]v[/math]. Проведём через каждую из них окружность, касающуюся изнутри в точке [math]v[/math] изначальную окружность. Рассмотрим точку [math]v'[/math], через которую проходит наименьшая окружность из построенных. В этой окружности не будет лежать никаких точек, так как мы взяли наименьшую. Значит, ребро [math]vv'[/math] удовлетворяет критерию Делоне и должно являться ребром триангуляции, но по предположению этого ребра нет. Значит, предположение неверно.
[math]\triangleleft[/math]

Время работы, требуемая память

TODO: Время работы, требуемая память

Constraints

Определение:
Констрейнты — рёбра, которые нельзя флипать.
Утверждение:
Хорошая триангуляция с констрейнтом может быть хорошей с точностью до видимости через констрейнт.

Вставка

Красным выделен вставляемый констрейнт

Смотрим на список рёбер, пересечённых ещё не вставленным констрейнтом, и флипаем их. Последнее флипнутое ребро и будет констрейнтом (по понятным причинам), после флипа пометим его как констрейнт. Затем флипаем всё, что могло стать плохим (кроме констрейнта), пока триангуляция вновь не станет хорошей.

Удаление

Аналогично: помечаем ребро как не-констрейнт и флипаем, пока не дойдём до хорошей триангуляции.