Алгоритм МакКрейта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} '''Алгоритм МакКрейта''' — алгоритм построения [[Сжатое суффиксное дерево|...»)
 
(Добавлена историческая справка)
Строка 1: Строка 1:
 
{{В разработке}}
 
{{В разработке}}
 
'''Алгоритм МакКрейта''' — алгоритм построения [[Сжатое суффиксное дерево|суффиксного дерева]] для заданной строки <tex>s</tex> за линейное время. Отличается от [[Алгоритм Укконена| алгоритма Укконена]] тем, что добавляет суффиксы в порядке убывания длины.
 
'''Алгоритм МакКрейта''' — алгоритм построения [[Сжатое суффиксное дерево|суффиксного дерева]] для заданной строки <tex>s</tex> за линейное время. Отличается от [[Алгоритм Укконена| алгоритма Укконена]] тем, что добавляет суффиксы в порядке убывания длины.
 +
 +
==Историческая справка==
 +
Первым оптимальным по времени был алгоритм, предложенный Вайнером в 1973 году. Идея алгоритма была в нахождении первых символов суффикса, которые находились в уже построенном дереве. Суффиксы просматривались от самого короткого к самому длинному, а для быстрого поиска использовались по два массива размера алфавита на каждую вершину, что затрудняло как понимание алгоритма, так и его реализацию и эффективность, особенно в плане занимаемой памяти. МакКрейт в 1976 году  предложил [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.8022&rep=rep1&type=pdf свой алгоритм], в котором порядок добавления суффиксов заменен на обратный, а для быстрого вычисления места, откуда нужно продолжить построение нового суффикса, достаточно суффиксной ссылки в каждой вершине. В 1995 году Укконен представил [http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf свою версию алгоритма], которая считается наиболее простой для понимания, а также, в отличие от алгоритмов Вейнера и МакКрейта, является online алгоритмом, способным строить неявное суффиксное дерево по мере прочтения строки, а затем превратить его в настоящее.
  
 
== Теоретическое обоснование ==
 
== Теоретическое обоснование ==
Заметим, что если два суффикса имеют <tex>lcp</tex> (''largest common prefix'') общих символов, то в построенном суффиксном дереве они будут иметь [[Сведение задачи LCA к задаче RMQ| наименьшего общего предка]] на этой глубине. Будем рассматривать суффиксы в порядке убывания длины, тогда имеет смысл узнавать наибольшее <tex>lcp</tex> с новым суффиксом среди всех суффиксов, добавленных раньше.  
+
Заметим, что если два суффикса имеют <tex>lcp</tex> (''largest common prefix'') общих символов, то в построенном суффиксном дереве они будут иметь [[Сведение задачи LCA к задаче RMQ| наименьшего общего предка]] на этой глубине. Будем рассматривать суффиксы в порядке убывания длины, тогда имеет смысл узнавать наибольшее <tex>lcp</tex> с новым суффиксом среди всех суффиксов, добавленных раньше. Обозначим как <tex>head_i</tex> {{---}} максимальный префикс <tex>s[j..\left\vert s \right\vert]</tex> и <tex>s[i..\left\vert s \right\vert]</tex> среди всех <tex>j < i</tex>.  
 
 
{{Определение
 
|id=def_head.
 
|definition=<tex>head_i</tex> {{---}} максимальный префикс <tex>s[j..\left\vert s \right\vert]</tex> и <tex>s[i..\left\vert s \right\vert])</tex> среди всех <tex>j < i</tex>.
 
}}
 
  
Пусть мы знаем <tex>head_i</tex> и место в дереве, которое ему соответствует. Если позиция находится на ребре, разрежем его, а потом добавим новую вершину.
+
Пусть мы знаем <tex>head_i</tex> и место в дереве, которое ему соответствует. Если позиция находится на ребре, разрежем его, а потом добавим новую вершину. Считать <tex>head_i</tex> по определению было бы очень затруднительно, но существует способ значительно сократить вычисления.
 
 
Считать <tex>head_i</tex> по определению было бы очень затруднительно, но существует способ значительно сократить вычисления.
 
  
 
{{Лемма
 
{{Лемма
Строка 27: Строка 23:
 
Для удобства реализации вместе с корнем <tex>root</tex> создадим вспомогательную вершину <tex>superRoot</tex>, обладающую свойствами:
 
Для удобства реализации вместе с корнем <tex>root</tex> создадим вспомогательную вершину <tex>superRoot</tex>, обладающую свойствами:
 
* <tex>root.suf = superRoot</tex>
 
* <tex>root.suf = superRoot</tex>
* Для любого символа <tex>c</tex> из вершины <tex>superRoot</tex> есть ребро в корень.
+
* Для любого символа <tex>c</tex> из вершины <tex>superRoot</tex> есть ребро в <tex>root</tex>.
  
 
Будем поддерживать инвариант:
 
Будем поддерживать инвариант:
Строка 48: Строка 44:
 
|statement=Инвариант алгоритма сохраняется
 
|statement=Инвариант алгоритма сохраняется
 
|proof=Инвариант мог бы нарушиться только в случае, если бы не существовало вершины в суффиксной ссылке для <tex>head_{i-1}</tex>, но мы продолжили бы сканирование по ребру дальше и получили две вершины <tex>head_{i-1}.suf, head_i</tex> с неопределенными суффиксными ссылками.  
 
|proof=Инвариант мог бы нарушиться только в случае, если бы не существовало вершины в суффиксной ссылке для <tex>head_{i-1}</tex>, но мы продолжили бы сканирование по ребру дальше и получили две вершины <tex>head_{i-1}.suf, head_i</tex> с неопределенными суффиксными ссылками.  
Покажем, что это невозможно. Рассмотрим, что значит, что <tex>head_{i-1}.suf</tex> остановилась посередине ребра. Это означает, что все суффиксы <tex>s[j..\left\vert s \right\vert], j < i - 1</tex>, которые дошли до этого места, имеют совпадающие символы, по определению <tex>head_{i-1}</tex> отличающиеся от символа суффикса <tex>s[i - 1..\left\vert s \right\vert]</tex>. Тогда и <tex>s[i..\left\vert s \right\vert]</tex> должен отличаться в этом символе, значит <tex>head_i = head_{i-1}.suf</tex>.
+
Покажем, что это невозможно. Рассмотрим, что значит, что <tex>head_{i-1}.suf</tex> остановилась посередине ребра. Это означает, что все суффиксы <tex>s[j..\left\vert s \right\vert], j < i - 1</tex>, которые дошли до этого места, имеют совпадающие следующие символы, по определению <tex>head_{i-1}</tex> отличающиеся от символа суффикса <tex>s[i - 1..\left\vert s \right\vert]</tex>. Тогда и <tex>s[i..\left\vert s \right\vert]</tex> должен отличаться в этом символе, значит <tex>head_i = head_{i-1}.suf</tex>.
 
}}
 
}}
  
Строка 61: Строка 57:
  
 
== Сравнение с другими алгоритмами ==
 
== Сравнение с другими алгоритмами ==
Является первым асимптотически оптимальным алгоритмом. В сравнении с [[Алгоритм Укконена| алгоритмом Укконена]]:
+
В сравнении с алгоритмом Вайнера:
 +
* Преимущества: каждая вершина хранит только суффиксную ссылку, а не массивы размера алфавита.
 +
* Недостатки: нет.
 +
 
 +
В сравнении с [[Алгоритм Укконена| алгоритмом Укконена]]:
 
* Преимущества: мы строим суффиксное дерево в явной форме, что может облегчить понимание алгоритма.
 
* Преимущества: мы строим суффиксное дерево в явной форме, что может облегчить понимание алгоритма.
 
* Недостатки: является offline алгоритмом, то есть требует для начала работы всю строку целиком.
 
* Недостатки: является offline алгоритмом, то есть требует для начала работы всю строку целиком.
  
 
== Источники ==
 
== Источники ==
* [http://ru.wikipedia.org/wiki/%D0%A1%D1%83%D1%84%D1%84%D0%B8%D0%BA%D1%81%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE Суффиксное дерево - Википедия]
+
* [[wikipedia:en:Suffix_tree| Suffix tree - Wikipedia]]
* [http://users-cs.au.dk/cstorm/courses/StrAlg_f12/slides/suffix-tree-construction.pdf ''C. N. Storm'', McCreight's suffix tree construction algorithm]  
+
* [http://www.academia.edu/3146231/Algorithms_on_strings_trees_and_sequences_computer_science_and_computational_biology ''Gusfield, Dan'' , Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology // Cambridge University Press, {{---}} 1999. {{---}} ISBN: 0-521-58519-8]
 +
* [http://users-cs.au.dk/cstorm/courses/StrAlg_f12/slides/suffix-tree-construction.pdf ''C. N. Storm'', McCreight's suffix tree construction algorithm]
 +
 
 
== См. также ==
 
== См. также ==
 
* [[Сжатое суффиксное дерево]]
 
* [[Сжатое суффиксное дерево]]
 
* [[Алгоритм Укконена]]
 
* [[Алгоритм Укконена]]
 +
 +
[[Категория: Дискретная математика и алгоритмы]]

Версия 13:34, 3 мая 2014

Эта статья находится в разработке!

Алгоритм МакКрейта — алгоритм построения суффиксного дерева для заданной строки [math]s[/math] за линейное время. Отличается от алгоритма Укконена тем, что добавляет суффиксы в порядке убывания длины.

Историческая справка

Первым оптимальным по времени был алгоритм, предложенный Вайнером в 1973 году. Идея алгоритма была в нахождении первых символов суффикса, которые находились в уже построенном дереве. Суффиксы просматривались от самого короткого к самому длинному, а для быстрого поиска использовались по два массива размера алфавита на каждую вершину, что затрудняло как понимание алгоритма, так и его реализацию и эффективность, особенно в плане занимаемой памяти. МакКрейт в 1976 году предложил свой алгоритм, в котором порядок добавления суффиксов заменен на обратный, а для быстрого вычисления места, откуда нужно продолжить построение нового суффикса, достаточно суффиксной ссылки в каждой вершине. В 1995 году Укконен представил свою версию алгоритма, которая считается наиболее простой для понимания, а также, в отличие от алгоритмов Вейнера и МакКрейта, является online алгоритмом, способным строить неявное суффиксное дерево по мере прочтения строки, а затем превратить его в настоящее.

Теоретическое обоснование

Заметим, что если два суффикса имеют [math]lcp[/math] (largest common prefix) общих символов, то в построенном суффиксном дереве они будут иметь наименьшего общего предка на этой глубине. Будем рассматривать суффиксы в порядке убывания длины, тогда имеет смысл узнавать наибольшее [math]lcp[/math] с новым суффиксом среди всех суффиксов, добавленных раньше. Обозначим как [math]head_i[/math] — максимальный префикс [math]s[j..\left\vert s \right\vert][/math] и [math]s[i..\left\vert s \right\vert][/math] среди всех [math]j \lt i[/math].

Пусть мы знаем [math]head_i[/math] и место в дереве, которое ему соответствует. Если позиция находится на ребре, разрежем его, а потом добавим новую вершину. Считать [math]head_i[/math] по определению было бы очень затруднительно, но существует способ значительно сократить вычисления.

Лемма:
Пусть [math]head_i = s[i..i+h][/math], тогда [math]s[i+1..i+h][/math] — префикс [math]head_{i+1}[/math].
Доказательство:
[math]\triangleright[/math]
  • При [math]h=0[/math], очевидно, пустая строка является префиксом любой другой.
  • Пусть [math]h \gt 0[/math]. Из определения [math]head_i[/math] существует суффикс [math]s[j..\left\vert s \right\vert][/math], имеющий [math]h[/math] общих символов с [math]s[i..\left\vert s \right\vert][/math]. Тогда [math]s[j+1..\left\vert s \right\vert][/math] будет иметь с [math]s[i+1..\left\vert s \right\vert][/math] общий префикс длины [math]h-1[/math]. Поскольку любой общий префикс будет по определению также являться и префиксом [math]head_{i+1}[/math], получаем искомое утверждение.
[math]\triangleleft[/math]

Если нам известны суффиксные ссылки [math]u.suf[/math] для каждой вершины [math]u[/math], мы можем быстро перейти от позиции [math]head_i[/math] к ее суффиксу и продолжить сравнение символов оттуда. Если бы новая позиция [math]head_i[/math] всегда оказывалась существующей вершиной построенного дерева, этот алгоритм бы уже работал, но в реальности можно оказаться на середине ребра, для которой суффиксная ссылка неизвестна. Для нахождения ее суффиксной ссылки на следующей итерации мы сначала перейдем к предку, пройдем по суффиксной ссылке, а уже затем будем продолжать сравнение.

Алгоритм

Для удобства реализации вместе с корнем [math]root[/math] создадим вспомогательную вершину [math]superRoot[/math], обладающую свойствами:

  • [math]root.suf = superRoot[/math]
  • Для любого символа [math]c[/math] из вершины [math]superRoot[/math] есть ребро в [math]root[/math].

Будем поддерживать инвариант:

  1. Для всех вершин, кроме, возможно, последней добавленной [math]head_i[/math], известны суффиксные ссылки.
  2. Суффиксная ссылка всегда ведет в вершину, а не в середину ребра.

При добавлении каждого следующего суффикса будем выполнять следующие шаги:

  • Если суффиксная ссылка [math]head_{i-1}[/math] не определена:
    1. Поднимемся вверх к ее предку;
    2. Пройдем по суффиксной ссылке;
    3. Спустимся вниз на столько символов, сколько мы прошли вверх к предку (fast scanning).
    4. Если мы оказались посередине ребра, разрежем его и добавим вершину.
    5. Установим суффиксную ссылку для [math]head_{i-1}[/math]
  • Иначе просто пройдем по суффиксной ссылке.
  • Будем идти по дереву вниз, пока либо не будет перехода по символу, либо очередной символ на ребре не совпадет с символом нового суффикса (slow scanning)
  • Добавим ребро/разрежем существующее, запомним новую позицию [math]head_i[/math] и добавим оставшуюся часть суффикса в качестве листа.
Утверждение:
Инвариант алгоритма сохраняется
[math]\triangleright[/math]

Инвариант мог бы нарушиться только в случае, если бы не существовало вершины в суффиксной ссылке для [math]head_{i-1}[/math], но мы продолжили бы сканирование по ребру дальше и получили две вершины [math]head_{i-1}.suf, head_i[/math] с неопределенными суффиксными ссылками.

Покажем, что это невозможно. Рассмотрим, что значит, что [math]head_{i-1}.suf[/math] остановилась посередине ребра. Это означает, что все суффиксы [math]s[j..\left\vert s \right\vert], j \lt i - 1[/math], которые дошли до этого места, имеют совпадающие следующие символы, по определению [math]head_{i-1}[/math] отличающиеся от символа суффикса [math]s[i - 1..\left\vert s \right\vert][/math]. Тогда и [math]s[i..\left\vert s \right\vert][/math] должен отличаться в этом символе, значит [math]head_i = head_{i-1}.suf[/math].
[math]\triangleleft[/math]

Асимптотическая оценка

В приведенном алгоритме используется константное число операций на добавление одного суффикса, не считая slow scanning и fast scanning.

Slow scanning делает [math]\left\vert head_i \right\vert - \left\vert head_{i-1} \right\vert + 1[/math] операций, что суммарно дает [math]\left\vert head_n \right\vert - \left\vert head_0 \right\vert + n = O(n)[/math] операций.

Fast scanning работает с целыми ребрами, поэтому будем использовать в качестве потенциала глубину в вершинах. Из структуры суффиксного дерева мы знаем, что суффиксная ссылка может уменьшить глубину вершины не более, чем на [math]1[/math], так что мы на каждой итерации поднимаемся не более, чем на [math]2[/math] — один раз к предку, а потом по суффиксной ссылке, что составляет [math]O(n)[/math] за весь алгоритм. Соответственно, спустимся мы тоже суммарно [math]O(n)[/math] раз, так как и максимальная глубина составляет [math]O(n)[/math].

Итоговая асимптотика алгоритма — [math]O(n)[/math].

Сравнение с другими алгоритмами

В сравнении с алгоритмом Вайнера:

  • Преимущества: каждая вершина хранит только суффиксную ссылку, а не массивы размера алфавита.
  • Недостатки: нет.

В сравнении с алгоритмом Укконена:

  • Преимущества: мы строим суффиксное дерево в явной форме, что может облегчить понимание алгоритма.
  • Недостатки: является offline алгоритмом, то есть требует для начала работы всю строку целиком.

Источники

См. также