Период и бордер, их связь — различия между версиями
Martoon (обсуждение | вклад) м |
Martoon (обсуждение | вклад) м |
||
Строка 101: | Строка 101: | ||
}} | }} | ||
+ | |||
+ | |||
+ | == См. также == | ||
+ | * [[Основные определения, связанные со строками]] | ||
== Примечания == | == Примечания == | ||
<references></references> | <references></references> | ||
− | == | + | == Литература == |
− | * | + | * Lothaire M. Algebraic Combinatorics on Words — Cambridge University Press, 2002. — с. 272. — ISBN 0-521-81220-8 |
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Основные определения. Простые комбинаторные свойства слов]] | [[Категория:Основные определения. Простые комбинаторные свойства слов]] |
Версия 18:35, 12 мая 2014
Содержание
Определения
Определение: |
Строка суффиксом, и префиксом . | называется бордером строки , если одновременно является и
Определение: |
Число | называется периодом строки , если .
Связь периода и бордера
Теорема: |
есть |
Доказательство: |
Пусть дана строка .Напишем формально определения бордера длины строки :
Сделаем замену :
|
Свойства периода
Теорема о кратном периоде
Теорема: |
Если у строки есть период длины , то у нее есть период длины , где . |
Доказательство: |
Пусть длина строки равна , сама строка — .Доказательство будем вести индукцией по числу .
|
Теорема о НОД периодов
Перед доказательством следующей теоремы докажем пару интуитивно понятных утверждений.
Лемма (1): |
Пусть строка имеет периоды и , причём . Тогда суффикс и префикс длины имеют период . |
Доказательство: |
Покажем истинность утверждения про префикс; с суффиксом доказательство аналогичное. Требуется показать что Поскольку Также имеет период , выполнено имеет период и из ограничений на верно , поэтому |
Лемма (2): |
Пусть строка имеет период , и существует подстрока такая, что и имеет период , где . Тогда имеет период . |
Доказательство: |
Пусть , где .Требуется показать: .Заметим, что поскольку , то отрезок содержит ровно целых чисел, так что найдутся такие, что .Так как [1]. , можем написатьПомимо того , тогда верно и .Теперь воспользуемся тем фактом, что если строка Поскольку имеет период , то (действительно, без ограничения общности можем сказать, что , тогда ). имеет период , имеют место равенства и . Поскольку имеет период , верно . Тогда и . |
Теорема (Фин и Вильф): |
Если у строки есть периоды и , где , то также является периодом этой строки. |
Доказательство: |
Обозначим . Доказательство будем вести индукцией по .
|
См. также
Примечания
Литература
- Lothaire M. Algebraic Combinatorics on Words — Cambridge University Press, 2002. — с. 272. — ISBN 0-521-81220-8