Хроматическое число планарного графа — различия между версиями
Martoon (обсуждение | вклад) м |
Martoon (обсуждение | вклад) м |
||
Строка 4: | Строка 4: | ||
{{Лемма | {{Лемма | ||
|id=5deg_vertex_lemma | |id=5deg_vertex_lemma | ||
− | |statement=В любом графе <tex> G </tex> существует вершина степени не больше 5. | + | |statement=В любом графе <tex> G </tex> существует вершина [[Основные определения теории графов#def_undirected_graph_2 | степени]] не больше 5. |
|proof= | |proof= | ||
− | Предположим это не так. Для любой вершины <tex> u_i </tex> графа <tex> G </tex> верно <tex> \mathrm{deg} \ u_i \ge 6 </tex>. Если сложить это неравенство для всех <tex> i </tex>, получим <tex> 2E \ge 6V </tex>. Но по [[Формула_Эйлера#EulerFormulaCons|следствию из теоремы Эйлера]] <tex> E \le 3V-6 </tex>. Пришли к противоречию. | + | Предположим это не так. Для любой вершины <tex> u_i </tex> графа <tex> G </tex> верно <tex> \mathrm{deg} \; u_i \ge 6 </tex>. Если сложить это неравенство для всех <tex> i </tex>, получим <tex> 2E \ge 6V </tex>. Но по [[Формула_Эйлера#EulerFormulaCons|следствию из теоремы Эйлера]] <tex> E \le 3V-6 </tex>. Пришли к противоречию. |
}} | }} | ||
Версия 00:24, 30 июня 2014
Для планарного графа можно дать оценку сверху на хроматическое число.
Раскраска в 6 цветов
Лемма: |
В любом графе степени не больше 5. существует вершина |
Доказательство: |
Предположим это не так. Для любой вершины следствию из теоремы Эйлера . Пришли к противоречию. | графа верно . Если сложить это неравенство для всех , получим . Но по
Теорема: |
Пусть граф - планарный. Тогда |
Доказательство: |
Докажем по индукции.
|
Раскраска в 5 цветов
Теорема: |
Пусть граф - планарный. Тогда |
Доказательство: |
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. Обозначим за - возвращаемую вершину, - вершину, покрашенную в цвет.Если среди вершин, смежных , есть две вершины одного цвета, значит остаётся по меньшей мере один свободный цвет, в который мы и покрасим .Иначе, уложим полученный после удаления граф на плоскость, вернём вершину (пока бесцветную) и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке.Попробуем покрасить в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину в цвет 3. Если среди смежных ей вершин есть вершины , покрасим их в цвет 1, и так далее. Рассмотрим две необычные ситуации, которые могут наступить во время обхода:
Если этот процесс был успешно завершён, то получили правильную раскраску. Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в графе есть цикл .Тогда попытаемся таким же образом перекрасить Если нет, то получили ещё один цикл в цвет 2, а смежную ей в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. . Но граф планарный, значит два полученных цикла пересекаются помимо вершины по крайней мере ещё в одной, что невозможно, ведь вершины первого цикла и второго - разных цветов. Значит такой случай наступить не мог. |
Успешное перекрашивание | Цикл 1-3, перекрасить не удаётся | ||||||
Заметим что не удаётся составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных
не исключает того, что все они раскрашены в разные цвета.Раскраска в 4 цвета
Данная теорема была доказана Кеннетом Аппелем и Вольфгангом Хакеном. Их доказательство сводилось к рассмотрению порядка 2000 графов, 4-раскрашиваемость которых была проверена при помощи компьютера. Подробнее см. здесь.