Матроид Вамоса — различия между версиями
Slavian (обсуждение | вклад) (→Доказательство матроидной природы) |
Slavian (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
'''Матроид Вамоса''' или '''куб Вамоса''' {{---}} это матроид над восьми элементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика '''Питера Вамоса''' ('''Peter Vámos'''), который первым описал его в неопубликованной рукописи в 1968. | '''Матроид Вамоса''' или '''куб Вамоса''' {{---}} это матроид над восьми элементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика '''Питера Вамоса''' ('''Peter Vámos'''), который первым описал его в неопубликованной рукописи в 1968. | ||
− | == Задание матроида== | + | == Задание матроида == |
Пусть <tex> E = \{1, 2, 3, 4, 5, 6, 7, 8\}</tex>. Матроид Вамоса <tex>V</tex> удобно задать, назвав все его '''зависимые''' множества: это все подмножества <tex>E</tex>, в которых не менее пяти элементов, а также <tex>\{1, 2, 5, 6\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\}</tex>. | Пусть <tex> E = \{1, 2, 3, 4, 5, 6, 7, 8\}</tex>. Матроид Вамоса <tex>V</tex> удобно задать, назвав все его '''зависимые''' множества: это все подмножества <tex>E</tex>, в которых не менее пяти элементов, а также <tex>\{1, 2, 5, 6\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\}</tex>. | ||
Строка 10: | Строка 10: | ||
Сначала убедимся в том, что перед нами действительно матроид. Фактически нуждается в проверке лишь тот факт, что если <tex>A</tex> и <tex>B</tex> независимые множества и <tex>|B| = 3</tex>, <tex>|A| = 4</tex>, то в <tex>A</tex> найдется такой элемент <tex>e</tex>, что <tex>B \cup \{e\}</tex> {{---}} независимое множество. Когда <tex>B \subset A</tex>, это очевидно. В противном же случае множество <tex> A \setminus B</tex> содержит по меньшей мере два различных элемента. Обозначим их через <tex>e1</tex> и <tex>e2</tex>. Теперь осталось заметить, что из множеств <tex>B \cup \{e1\}</tex> и <tex>B \cup \{e2\}</tex> хотя бы одно независимое, так как по условию нет двух зависимых множеств из | Сначала убедимся в том, что перед нами действительно матроид. Фактически нуждается в проверке лишь тот факт, что если <tex>A</tex> и <tex>B</tex> независимые множества и <tex>|B| = 3</tex>, <tex>|A| = 4</tex>, то в <tex>A</tex> найдется такой элемент <tex>e</tex>, что <tex>B \cup \{e\}</tex> {{---}} независимое множество. Когда <tex>B \subset A</tex>, это очевидно. В противном же случае множество <tex> A \setminus B</tex> содержит по меньшей мере два различных элемента. Обозначим их через <tex>e1</tex> и <tex>e2</tex>. Теперь осталось заметить, что из множеств <tex>B \cup \{e1\}</tex> и <tex>B \cup \{e2\}</tex> хотя бы одно независимое, так как по условию нет двух зависимых множеств из | ||
четырtх элементов, отличающихся одним элементом. | четырtх элементов, отличающихся одним элементом. | ||
+ | |||
+ | == Свойства == | ||
+ | |||
+ | == Источники информации == | ||
+ | *[http://en.wikipedia.org/wiki/V%C3%A1mos_matroid Vámos matroid, wikipedia] | ||
+ | *[http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000305409&dtype=F&etype=.pdf Элементарное введение | ||
+ | в матроиды] | ||
+ | |||
+ | |||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
+ | [[Категория:Матроиды]] |
Версия 13:28, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьми элементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Задание матроида
Пусть
. Матроид Вамоса удобно задать, назвав все его зависимые множества: это все подмножества , в которых не менее пяти элементов, а также .Доказательство матроидной природы
Сначала убедимся в том, что перед нами действительно матроид. Фактически нуждается в проверке лишь тот факт, что если
и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырtх элементов, отличающихся одним элементом.Свойства
Источники информации
- Vámos matroid, wikipedia
- [http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000305409&dtype=F&etype=.pdf Элементарное введение
в матроиды]