Матроид Вамоса — различия между версиями
Строка 4: | Строка 4: | ||
− | |||
− | |||
'''Матроид Вамоса''' {{---}} пара <tex>\langle X, I \rangle</tex>, где <tex> X = \{1, 2, 3, 4, 5, 6, 7, 8\}</tex>, а [[Определение_матроида | '''зависимыми''']] множествами: являются все подмножества <tex>X</tex>, в которых не менее пяти элементов, а также <tex>\{1, 2, 5, 6\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\}</tex>. | '''Матроид Вамоса''' {{---}} пара <tex>\langle X, I \rangle</tex>, где <tex> X = \{1, 2, 3, 4, 5, 6, 7, 8\}</tex>, а [[Определение_матроида | '''зависимыми''']] множествами: являются все подмножества <tex>X</tex>, в которых не менее пяти элементов, а также <tex>\{1, 2, 5, 6\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\}</tex>. | ||
− | |||
− | {{ | + | |
+ | |||
+ | |||
+ | {{Утверждение | ||
|statement=Заданная конструкция является матроидом. | |statement=Заданная конструкция является матроидом. | ||
|proof= | |proof= |
Версия 17:15, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьмиэлементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Матроид Вамоса — пара зависимыми множествами: являются все подмножества , в которых не менее пяти элементов, а также .
, где , а
Утверждение: |
Заданная конструкция является матроидом. |
Выполнение первых двух аксиом очевидно. В проверке нуждается лишь тот факт, что если | и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырех элементов, отличающихся одним элементом.
Свойства
- Все циклы матроида Вамоса имеют размер по меньшей мере равный его рангу (максимальный размер независимого множества).
- Матроид Вамоса изоморфен своему двойственному матроиду. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
- Многочлен Татта матроида Вамоса равен
- Матроид Вамоса не является матричным.
Матроид Вамоса не представим ни над каким полем
Теорема: |
Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. |
Доказательство: |
Предположим, что существует изоморфный векторный матроид , где , и для каждого вектор соответствует элементу матроида Вамоса. Множество является базисом . Запишем координаты каждого вектора в этом базисе: . Для дальнейшего нам понадобятся также векторы и , где . Ввиду линейной зависимости векторов получаем равенство нулю определителя, составленного из координат этих векторов:
отсюда
то есть векторы и линейно зависимы. Заметим, что вектор ненулевой (иначе были бы линейно зависимыми векторы , а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) имеет место равенство . Точно так же из линейной зависимости четвёрок векторов получаем соответственно равенства , где греческими буквами обозначены некоторые скаляры.Наконец, используем линейную зависимость векторов . С помощью найденных соотношений будем преобразовывать определитель, составленный из координат этих векторов (при этом вместо строк определителя для наглядности записываем поначалу соответствующие векторы):
Теперь заметим, что то есть векторы (в противном случае линейно зависимыми будут векторы и , а (иначе линейно зависимы векторы и ) . Поэтому равен нулю один из определителей или , например - первый из них. Но тогда линейно зависимы, что противоречит условию. |