Получение номера по объекту — различия между версиями
(→Битовые вектора) |
Dima32ml (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 1: | Строка 1: | ||
== Описание алгоритма == | == Описание алгоритма == | ||
− | Номер данного [[Комбинаторные объекты|комбинаторного объекта]] равен количеству меньших в [[Лексикографический порядок|лексикографическом порядке]] комбинаторных объектов (нумерацию ведём с 0). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины <tex>i</tex> совпадает, а <tex>i+1</tex> элемент лексикографически меньше <tex>i+1</tex>-го в данном объекте (<tex>i = 0..n-1</tex>). | + | Номер данного [[Комбинаторные объекты|комбинаторного объекта]] равен количеству меньших в [[Лексикографический порядок|лексикографическом порядке]] комбинаторных объектов (нумерацию ведём с <tex>0</tex>). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины <tex>i</tex> совпадает, а <tex>i+1</tex> элемент лексикографически меньше <tex>i+1</tex>-го в данном объекте (<tex>i = 0..n-1</tex>). |
Следующий алгоритм вычисляет эту сумму | Следующий алгоритм вычисляет эту сумму | ||
− | *numOfObject {{---}} искомый номер комбинаторного объекта. | + | *<tex>numOfObject</tex> {{---}} искомый номер комбинаторного объекта. |
− | *a[1..n] {{---}} данный комбинаторный обьект, состоящий из элементов множества <tex>A</tex>. | + | *<tex>a[1..n]</tex> {{---}} данный комбинаторный обьект, состоящий из элементов множества <tex>A</tex>. |
− | *d[i][j] - (количество комбинаторных объектов с префиксом от 1 до <tex>i-1</tex> равным данному и с <tex>i</tex>-м элементом равным <tex>j</tex>) | + | *<tex>d[i][j]</tex> - (количество комбинаторных объектов с префиксом от 1 до <tex>i-1</tex> равным данному и с <tex>i</tex>-м элементом равным <tex>j</tex>) |
'''function''' object2num(a: '''list <A>''') | '''function''' object2num(a: '''list <A>''') | ||
Строка 13: | Строка 13: | ||
'''then''' numOfObject += d[i][j] | '''then''' numOfObject += d[i][j] | ||
'''return''' numOfObject | '''return''' numOfObject | ||
− | Сложность алгоритма {{---}} <tex>O(nk) </tex>, где <tex>k</tex> - количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора <tex>k=2,</tex> поскольку возможны только 0 и 1. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. | + | Сложность алгоритма {{---}} <tex>O(nk) </tex>, где <tex>k</tex> - количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора <tex>k=2,</tex> поскольку возможны только <tex>0</tex> и <tex>1</tex>. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. |
Приведем примеры способов получения номеров некоторых из комбинаторных объектов по данному объекту. | Приведем примеры способов получения номеров некоторых из комбинаторных объектов по данному объекту. | ||
Версия 02:17, 5 декабря 2014
Содержание
Описание алгоритма
Номер данного комбинаторного объекта равен количеству меньших в лексикографическом порядке комбинаторных объектов (нумерацию ведём с ). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины совпадает, а элемент лексикографически меньше -го в данном объекте ( ). Следующий алгоритм вычисляет эту сумму
- — искомый номер комбинаторного объекта.
- — данный комбинаторный обьект, состоящий из элементов множества .
- - (количество комбинаторных объектов с префиксом от 1 до равным данному и с -м элементом равным )
function object2num(a: list <A>) numOfObject = 0 for i = 1 to n do // перебираем элементы комбинаторного объекта for j = 1 to a[i] - 1 do // перебираем элементы, которые в лексикографическом порядке меньше рассматриваемого if элемент j можно поставить на i-e место then numOfObject += d[i][j] return numOfObject
Сложность алгоритма —
, где - количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора поскольку возможны только и . Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Приведем примеры способов получения номеров некоторых из комбинаторных объектов по данному объекту.Перестановки
Рассмотрим алгоритм получения номера в лексикографическом порядке по данной перестановке размера
.- P[1..n] — количество перестановок данного размера.
- a[1..n] — данная перестановка.
- was[1..n] — использовали ли мы уже эту цифру в перестановке.
function permutation2num(a: list <int>) numOfPermutation = 0 for i = 1 to n do // n - количество элементов в перестановке for j = 1 to a[i] - 1 do // перебираем элемент, лексикографически меньший нашего, который может стоять на i-м месте if was[j] == false // если элемент j ранее не был использован then numOfPermutation += P[n - i] // все перестановки с префиксом длиной i-1 равным нашему, и i-й элемент у которых меньше нашего в лексикографическом порядке, идут раньше данной перестановки was[a[i]] = true // i-й элемент использован return numOfPermutation
Данный алгоритм работает за
.Битовые вектора
Рассмотрим алгоритм получения номера
в лексикографическом порядке данного битового вектора размера . Всего существует битовых векторов длины . На каждой позиции может стоять один из двух элементов независимо от того, какие элементы находятся в префиксе, поэтому поиск меньших элементов можно упростить до условия:- numOfBitvector — искомый номер вектора.
- bitvector[1..n] — данный вектор.
function bitvector2num(bitvector: list <int>) numOfBitvector = 0 for i = 1 to n do if bitvector[i] == 1 numOfBitvector += pow(2, n - i) return numOfBitvector
Скобочные последовательности
См. также
- Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31