NP-полнота задачи BH1N — различия между версиями
(→Доказательство принадлежности BH_{1N} классу NP) |
|||
Строка 1: | Строка 1: | ||
==Определение языка <tex>BH_{1N}</tex>== | ==Определение языка <tex>BH_{1N}</tex>== | ||
Языком <tex>BH_{1N}</tex>(от англ. bounded halting unary) называется множество троек <tex>\langle m, x, 1^{t} \rangle</tex>, где <tex>m</tex> - недетерминированная машина Тьюринга (НМТ), <tex>x</tex> - входные данные и <tex>t</tex> - время в унарной системе счисления, таких, что <tex>m(x)=1</tex> и время работы машины <tex>m</tex> на входе <tex>x</tex> <tex>T(m, x)\le t</tex>. | Языком <tex>BH_{1N}</tex>(от англ. bounded halting unary) называется множество троек <tex>\langle m, x, 1^{t} \rangle</tex>, где <tex>m</tex> - недетерминированная машина Тьюринга (НМТ), <tex>x</tex> - входные данные и <tex>t</tex> - время в унарной системе счисления, таких, что <tex>m(x)=1</tex> и время работы машины <tex>m</tex> на входе <tex>x</tex> <tex>T(m, x)\le t</tex>. | ||
− | <tex>BH_{1N} = | + | <tex>BH_{1N} = \{ \langle m, x, 1^{t} \rangle | m </tex> — НМТ, <tex> m(x)=1, T(m, x)\le t \}</tex>. |
Так же можно рассматривать языки <tex>BH_{1D}</tex>, <tex>BH_{2N}</tex>, <tex>BH_{2D}</tex>, отличающиеся от <tex>BH_{1N}</tex> только детерминированностью машин Тьюринга (<tex>D</tex> - детерминированная, <tex>N</tex> - недетерминированная) или системой счисления, в которой представляется время (1 - унарная, 2 - бинарная). | Так же можно рассматривать языки <tex>BH_{1D}</tex>, <tex>BH_{2N}</tex>, <tex>BH_{2D}</tex>, отличающиеся от <tex>BH_{1N}</tex> только детерминированностью машин Тьюринга (<tex>D</tex> - детерминированная, <tex>N</tex> - недетерминированная) или системой счисления, в которой представляется время (1 - унарная, 2 - бинарная). | ||
==Теорема== | ==Теорема== | ||
− | Язык <tex>BH_{1N}</tex> | + | Язык <tex>BH_{1N}</tex> является <tex>NP</tex>-полным: <tex>BH_{1N}\in NPC</tex>. |
==Доказательство== | ==Доказательство== | ||
Для того, чтобы доказать [[Понятие_NP-трудной_и_NP-полной_задачи|NP-полноту]] <tex>BH_{1}</tex> необходимо установить следующие факты: | Для того, чтобы доказать [[Понятие_NP-трудной_и_NP-полной_задачи|NP-полноту]] <tex>BH_{1}</tex> необходимо установить следующие факты: | ||
Строка 12: | Строка 12: | ||
===Доказательство принадлежности <tex>BH_{1N}</tex> классу NP=== | ===Доказательство принадлежности <tex>BH_{1N}</tex> классу NP=== | ||
− | + | Будем использовать в качестве сертификата <tex>y</tex> последовательность недетерминированных выборов, которые должна сделать машина <tex>m</tex>, чтобы допустить слово <tex>x</tex>. Длина сертификата меньше, чем <tex>ct</tex>. | |
− | Если НМТ <tex>m</tex> допускает слово <tex>x</tex> за время <tex>t</tex>, то существует последовательность действий, которые совершает машина <tex>m</tex>, среди которых могут быть и недетерминированные. Следовательно, существует сертификат <tex>y</tex> | + | Для проверки сертификата используется программа <tex>R(\langle m, x, 1^{t}\rangle, y)</tex>, эмулирующая работу недетерминированной машины Тьюринга <tex>m</tex> на слове <tex>x</tex>. Там, где у машины <tex>m</tex> было несколько выборов, <tex>R</tex> совершает действие согласно сертификату. При этом замеряется время работы машины <tex>t</tex>. Проверяющая программа может проэмулировать <tex>m</tex>, затратив полиномиальное количество времени. |
+ | |||
+ | Если НМТ <tex>m</tex> допускает слово <tex>x</tex> за время <tex>t</tex>, то существует последовательность действий, которые совершает машина <tex>m</tex>, среди которых могут быть и недетерминированные. Следовательно, существует сертификат <tex>y</tex>. Если же слово не допускается или допускается, но за время, большее <tex>t</tex>, то любая последовательность действий не ведет к допуску слова, а значит нет и последовательности недетерминированных выборов, которые могла бы сделать машина <tex>m</tex>. | ||
Все условия принадлежности классу <tex>NP</tex> выполнены. | Все условия принадлежности классу <tex>NP</tex> выполнены. | ||
Строка 22: | Строка 24: | ||
Рассмотрим произвольный язык <tex>L</tex> из класса <tex>NP</tex>. Для него существует машина Тьюринга <tex>m</tex>, такая что <tex>T(m, x)\le p(|x|), L(m) = L</tex>. | Рассмотрим произвольный язык <tex>L</tex> из класса <tex>NP</tex>. Для него существует машина Тьюринга <tex>m</tex>, такая что <tex>T(m, x)\le p(|x|), L(m) = L</tex>. | ||
Докажем, что <tex>L</tex> сводится по Карпу к <tex> BH_{1N}</tex>. Рассмотрим функцию <tex>f(x) = \langle m, x, 1^{p|x|)}\rangle</tex> по входным данным возвращающую тройку из машины Тьюринга, попадающую под описанные выше условия, входных данных и времени <tex>p(|x|)</tex> в унарной системе счисления. Эта функция существует, она своя для каждого языка. Проверим, что <tex>x \in L \Leftrightarrow f(x) \in BH_{1N}</tex>. | Докажем, что <tex>L</tex> сводится по Карпу к <tex> BH_{1N}</tex>. Рассмотрим функцию <tex>f(x) = \langle m, x, 1^{p|x|)}\rangle</tex> по входным данным возвращающую тройку из машины Тьюринга, попадающую под описанные выше условия, входных данных и времени <tex>p(|x|)</tex> в унарной системе счисления. Эта функция существует, она своя для каждого языка. Проверим, что <tex>x \in L \Leftrightarrow f(x) \in BH_{1N}</tex>. | ||
+ | |||
Пусть <tex>x \in L</tex>. Тогда <tex>m(x) = 1</tex>. Время работы <tex>m</tex> не больше <tex>p(|x|)</tex>, а значит слово <tex>x</tex> будет допущено машиной <tex>m</tex> за время не больше, чем <tex>p(|x|)</tex>. А тогда тройка <tex>\langle m,x, 1^{p(|x|)}\rangle = f(x)</tex> будет входить в <tex>BH_{1N}</tex> согласно его определению. | Пусть <tex>x \in L</tex>. Тогда <tex>m(x) = 1</tex>. Время работы <tex>m</tex> не больше <tex>p(|x|)</tex>, а значит слово <tex>x</tex> будет допущено машиной <tex>m</tex> за время не больше, чем <tex>p(|x|)</tex>. А тогда тройка <tex>\langle m,x, 1^{p(|x|)}\rangle = f(x)</tex> будет входить в <tex>BH_{1N}</tex> согласно его определению. | ||
Пусть <tex>x \not\in L</tex>. Тогда <tex>m(x) = 0</tex>. Но тогда тройка <tex>\langle m, x, 1^{t}\rangle</tex> не принадлежит <tex>BH_{1N}</tex> при любом <tex>t</tex>, а значит и при <tex>t = p(|x|)</tex>. | Пусть <tex>x \not\in L</tex>. Тогда <tex>m(x) = 0</tex>. Но тогда тройка <tex>\langle m, x, 1^{t}\rangle</tex> не принадлежит <tex>BH_{1N}</tex> при любом <tex>t</tex>, а значит и при <tex>t = p(|x|)</tex>. | ||
Значит произвольный язык из класса <tex>NP</tex> сводится по Карпу к <tex>BH_{1N}</tex>, и <tex>BH_{1N} \in NPC</tex>. Что и требовалось доказать. | Значит произвольный язык из класса <tex>NP</tex> сводится по Карпу к <tex>BH_{1N}</tex>, и <tex>BH_{1N} \in NPC</tex>. Что и требовалось доказать. |
Версия 18:24, 18 марта 2010
Содержание
Определение языка
Языком
(от англ. bounded halting unary) называется множество троек , где - недетерминированная машина Тьюринга (НМТ), - входные данные и - время в унарной системе счисления, таких, что и время работы машины на входе . — НМТ, . Так же можно рассматривать языки , , , отличающиеся от только детерминированностью машин Тьюринга ( - детерминированная, - недетерминированная) или системой счисления, в которой представляется время (1 - унарная, 2 - бинарная).Теорема
Язык
является -полным: .Доказательство
Для того, чтобы доказать NP-полноту необходимо установить следующие факты:
- .
- ;
Доказательство принадлежности классу NP
Будем использовать в качестве сертификата
последовательность недетерминированных выборов, которые должна сделать машина , чтобы допустить слово . Длина сертификата меньше, чем .Для проверки сертификата используется программа
, эмулирующая работу недетерминированной машины Тьюринга на слове . Там, где у машины было несколько выборов, совершает действие согласно сертификату. При этом замеряется время работы машины . Проверяющая программа может проэмулировать , затратив полиномиальное количество времени.Если НМТ
допускает слово за время , то существует последовательность действий, которые совершает машина , среди которых могут быть и недетерминированные. Следовательно, существует сертификат . Если же слово не допускается или допускается, но за время, большее , то любая последовательность действий не ведет к допуску слова, а значит нет и последовательности недетерминированных выборов, которые могла бы сделать машина .Все условия принадлежности классу
выполнены.Доказательство принадлежности классу NPH
Теперь докажем, что
принадлежит классу . Рассмотрим произвольный язык из класса . Для него существует машина Тьюринга , такая что . Докажем, что сводится по Карпу к . Рассмотрим функцию по входным данным возвращающую тройку из машины Тьюринга, попадающую под описанные выше условия, входных данных и времени в унарной системе счисления. Эта функция существует, она своя для каждого языка. Проверим, что .Пусть
. Тогда . Время работы не больше , а значит слово будет допущено машиной за время не больше, чем . А тогда тройка будет входить в согласно его определению. Пусть . Тогда . Но тогда тройка не принадлежит при любом , а значит и при .Значит произвольный язык из класса
сводится по Карпу к , и . Что и требовалось доказать.