Основные определения теории графов — различия между версиями
м |
м |
||
Строка 59: | Строка 59: | ||
==Неориентированные графы== | ==Неориентированные графы== | ||
{{Определение | {{Определение | ||
− | |id = | + | |id = def_undirected_graph_1 |
|definition = | |definition = | ||
'''Неориентированным графом''' (англ. ''undirected graph'') <tex>G</tex> называется пара <tex>G = (V, E)</tex>, где <tex>V</tex> {{---}} множество вершин, а <tex> E \subset \{\{v, u\}: v, u \in V\}</tex> {{---}} множество рёбер. | '''Неориентированным графом''' (англ. ''undirected graph'') <tex>G</tex> называется пара <tex>G = (V, E)</tex>, где <tex>V</tex> {{---}} множество вершин, а <tex> E \subset \{\{v, u\}: v, u \in V\}</tex> {{---}} множество рёбер. | ||
Строка 76: | Строка 76: | ||
{{Определение | {{Определение | ||
+ | |id = def_graph_degree_1 | ||
|definition = | |definition = | ||
'''Степенью''' (англ. ''degree'', ''valency'') вершины <tex>\operatorname{deg} v_i</tex> в неориентированном графе называют число ребер, инцидентных <tex>v_i</tex>. | '''Степенью''' (англ. ''degree'', ''valency'') вершины <tex>\operatorname{deg} v_i</tex> в неориентированном графе называют число ребер, инцидентных <tex>v_i</tex>. | ||
Строка 114: | Строка 115: | ||
{{Определение | {{Определение | ||
+ | |id = def_graph_cycle_1 | ||
|definition = | |definition = | ||
'''Цикл''' (англ. ''integral cycle'') {{---}} это [[Отношение эквивалентности#Классы эквивалентности|класс эквивалентности]] циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если <tex> \exists j \forall i : e_{(i \mod k)} = e'_{(i + j) \bmod k}</tex>; где <tex>e</tex> и <tex>e'</tex> {{---}} это две последовательности ребер в циклическом пути. | '''Цикл''' (англ. ''integral cycle'') {{---}} это [[Отношение эквивалентности#Классы эквивалентности|класс эквивалентности]] циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если <tex> \exists j \forall i : e_{(i \mod k)} = e'_{(i + j) \bmod k}</tex>; где <tex>e</tex> и <tex>e'</tex> {{---}} это две последовательности ребер в циклическом пути. |
Версия 23:38, 11 октября 2014
Содержание
Ориентированные графы
Определение: |
Ориентированным графом (англ. directed graph) | называется пара , где — множество вершин (англ. vertices), а — множество рёбер.
Определение: |
Конечным графом (англ. finite graph) | называется граф, в котором множества и — конечны. Следует заметить, что большинство рассматриваевых нами графов — конечны.
Определение: |
Ребром (англ. edge, дугой (англ. arc), линией (англ. line)) ориентированного графа называют упорядоченную пару вершин | .
Определение: |
Изоморфные графы (англ. isomorphic graphs) — два графа | и называются изоморфными, если можно установить биекцию между их вершинами и соответствующими им ребрами.
В графе ребро, концы которого совпадают, то есть , называется петлей (англ. loop).
Два ребра, имеющие общую концевую вершину, то есть
и , называются смежными (англ. adjacent).Если имеется ребро
, то говорят:- — предок (англ. direct predecessor) .
- и — смежные.
- Вершина инцидентна ребру .
- Вершина инцидентна ребру .
Инцидентность (англ. incidence) — понятие, используемое только в отношении ребра и вершины. Две вершины или два ребра не могут быть инцидентны.
Граф с
вершинами и ребрами называют -графом. -граф называют тривиальным.Заметим, что по определению ориентированного графа, данному выше, любые две вершины
нельзя соединить более чем одним ребром . Поэтому часто используют другое определение.Определение: |
Ориентированным графом | называется четверка , где и — некоторые множества, а .
Данное определение разрешает соединять вершины более чем одним ребром. Такие ребра называются кратными (иначе — параллельные, англ. multi-edge, parallel edge). Граф с кратными рёбрами принято называть мультиграфом (англ. multigraph). Если в мультиграфе присутствуют петли, то такой граф называют псевдографом (англ. pseudograph).
Определение: |
Для ориентированных графов определяют полустепень исхода вершины (англ. outdegree) | и полустепень захода вершины (англ. indegree) .
Стоит отметить, что для ориентированного графа справедлива лемма о рукопожатиях, связывающая количество ребер с суммой степеней вершин.
Неориентированные графы
Определение: |
Неориентированным графом (англ. undirected graph) | называется пара , где — множество вершин, а — множество рёбер.
Определение: |
Ребром в неориентированном графе называют неупорядоченную пару вершин | .
Иное определение:
Определение: |
Неориентированным графом | называется тройка , где — множество вершин, — множество ребер, а . Это определение, в отличие от предыдущего, позволяет задавать графы с кратными ребрами.
Определение: |
Степенью (англ. degree, valency) вершины | в неориентированном графе называют число ребер, инцидентных .
Будем считать, что петли добавляют к степени вершины
.Остальные определения в неориентированном графе совпадают с аналогичными определениями в ориентированном графе.
Представление графов
Матрица и списки смежности
Граф можно представить в виде матрицы смежности (англ. adjacency matrix), где . Также в ячейке матрицы можно хранить вес ребра или их количество (если в графе разрешены параллельные ребра). Для матрицы смежности существует теорема, позволяющая связать степень матрицы и количество путей из вершины в вершину .
Если граф разрежен (англ. sparse graph),
, то есть, неформально говоря, в нем не очень много ребер. Формально говорить не получается, потому что везде разреженные графы определяются по-разному, его лучше представить в виде списков смежности, где список для вершины будет содержать вершины . Данный способ позволит сэкономить память, так как не придется хранить много нулей.Пути в графах
Определение: |
Путём (маршрутом,англ. path) в графе называется последовательность вида | , где — длина (англ. length) пути.
Определение: |
Длина пути — количество рёбер, входящих в последовательность, задающую этот путь. |
Определение: |
Циклическим путём (англ. closed walk) в ориентированном графе называется путь, в котором | .
Определение: |
Циклическим путём в неориентированном графе называется путь, в котором | , а так же .
Определение: |
Цикл (англ. integral cycle) — это класс эквивалентности циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если ; где и — это две последовательности ребер в циклическом пути. |
Определение: |
Простой (вершинно-простой) путь (англ. simple path) — путь, в котором каждая из вершин графа встречается не более одного раза. |
Определение: |
Реберно-простой путь — путь, в котором каждое из ребер графа встречается не более одного раза. |
Часто используемые графы
Определение: |
Полный граф (англ. complete graph) — граф, в котором каждая пара различных вершин смежна. Полный граф с | вершинами имеет рёбер и обозначается .
Определение: |
Двудольный граф или биграф (англ. bipartite graph) — граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части. Двудольный граф с | вершинами в одной доле и во второй обозначается .
Определение: |
Регулярный граф (англ. regular graph) — граф, степени всех вершин которого равны, то есть каждая вершина имеет одинаковое количество соседей. Регулярный граф с вершинами степени | называется ‑регулярным, или регулярным графом степени .
Определение: |
Дерево (англ. tree) — связный ациклический граф. |
Определение: |
Граф называется эйлеровым (англ. eulerian graph), если он содержит эйлеров цикл. |
Определение: |
Граф называется гамильтоновым (англ. hamiltonian graph), если он содержит гамильтонов цикл. |
Определение: |
Граф называется планарным (англ. planar graph), если он обладает укладкой на плоскости. Плоским (англ. plane graph, planar embedding of the graph) называется граф уже уложенный на плоскости. |
Определение: |
Остовное дерево (англ. spanning tree) — ациклический связный подграф данного связного неориентированного графа, в который входят все его вершины. |
См. также
Источники информации
- Википедия — Граф
- Wikipedia — Graph
- Wolfram Mathworld: Graph
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)