Преобразование Мёбиуса для получения коэффициентов полинома Жегалкина — различия между версиями
(+ Доказательство формулы преобразования. Различные исправления.) |
|||
Строка 3: | Строка 3: | ||
\\ 1, \;\; i _{k}=0 | \\ 1, \;\; i _{k}=0 | ||
\end{matrix}\right. </tex>/ Тогда [[Полином_Жегалкина|полином Жегалкина]] можно записать как: <tex> f(x) = \bigoplus\limits_{i} \alpha _{i} \cdot x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdot ... \cdot x_{n}^{i_{n}}</tex>, где <tex>\alpha _{i} \in \{ 0; 1 \}</tex>. | \end{matrix}\right. </tex>/ Тогда [[Полином_Жегалкина|полином Жегалкина]] можно записать как: <tex> f(x) = \bigoplus\limits_{i} \alpha _{i} \cdot x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdot ... \cdot x_{n}^{i_{n}}</tex>, где <tex>\alpha _{i} \in \{ 0; 1 \}</tex>. | ||
+ | <br/> | ||
+ | Множество коэффициентов <tex>\{\alpha _{i}\}</tex> можно рассматривать как функцию <tex>\alpha</tex>, заданной на множестве индексов <tex> i \in \overline{1..n}</tex>, то есть <tex>\alpha: i \mapsto \alpha_{i}</tex>. | ||
+ | |||
+ | Очевидно, функцию <tex> f </tex> можно записать и следующим образом: <tex> f(x) = \bigoplus \limits_{i} \alpha _{i} \cdot [x _{1} , \; </tex> если <tex> \;\; i _{1}] \cdot [x _{2} , \; </tex> если <tex> \;\; i _{2}] \cdot ... \cdot [x _{n} , \; </tex> если <tex> \;\; i_{n}]</tex>. | ||
+ | |||
+ | Тут запись <tex>[x _{k} , \; </tex> если <tex> \; i _{k}]</tex> означает, что элелемент <tex> x_{k} </tex> присутствует в соответствующем члене полинома только если <tex> i_{k} = 1 </tex>. | ||
+ | Отсюда ясно, что <tex> f(x) = \bigoplus \limits_{i \preceq x} \alpha _{i} </tex>. <tex> (1) </tex><br/> | ||
+ | Найдем отображение <tex> f \mapsto \alpha</tex> (То есть такое, которое по заданной функции вычисляет значения всех коэффциентов). | ||
{{Теорема | {{Теорема | ||
− | |statement=Тогда | + | |statement=Пусть задана функция <tex> f </tex>. Тогда функцию <tex> \alpha_{x} </tex> можно найти по формуле: <tex>\alpha _{x} = \bigoplus \limits_{j\preceq x} f(j)</tex> <tex> (2) </tex>. |
− | ||proof=Докажем | + | ||proof=Докажем при помощи индукции по количеству единиц в векторе <tex> x </tex> ( иначе говоря, по сумме <tex>x_{1}+x_{2}+...+x_{n}</tex> ) и для удобства обозначим это количество (сумму) <tex> wt(x) </tex>. <br/> |
− | 1) База: если <tex> x = 0 </tex>, то, очевидно <tex> f(0) = \alpha _{0} </tex><br/> | + | '''1)''' База: если <tex> x = 0 </tex>, то, очевидно <tex> f(0) = \alpha _{0} </tex><br/> |
− | 2) Пускай теорема справедлива для всех сумм <tex> | + | '''2)''' Пускай теорема справедлива для всех сумм <tex>wt(x) < k</tex>. Покажем, что в таком случае она верна и для <tex>wt(x) = k</tex>. По <tex> (1) </tex>, а далее по предположению индукции видим: <tex> f(x) = \bigoplus \limits_{i \preceq x} \alpha _{i} = \left [ \bigoplus \limits_{i \prec x} \bigoplus \limits_{j\preceq i} f(j) \right ] \oplus \alpha_{x}</tex> |
+ | |||
+ | Рассмотрим сумму <tex> \left [ \bigoplus \limits_{i \prec x} \bigoplus \limits_{j\preceq i} f(j) \right ] </tex>. Каждый элемент <tex> f(j) </tex> содержится в ней, только если <tex> j \preceq x </tex>. И для фиксированных <tex> j, x </tex> элемент <tex> f(j)</tex> встречается ровно столько раз, сколько существует <tex> i </tex> , таких, что <tex> j \prec i \preceq x</tex>. Несложно увидеть, что таких <tex> i </tex> встретится ровно <tex> 2^{wt(x)-wt(j)}-1 </tex>, то есть нечетное количество раз. Тогда <tex> \left [ \bigoplus \limits_{i \prec x} \bigoplus \limits_{j\preceq i} f(j) \right ] = \bigoplus \limits_{j\prec x} f(j) </tex>. | ||
+ | Но тогда <tex> f(x) = \left [ \bigoplus \limits_{j\prec x} f(j) \right ] \oplus \alpha_{x} \Leftrightarrow f(x) \oplus \bigoplus \limits_{j\prec x} f(j) = \alpha_{x} \Leftrightarrow \alpha_{x} = \bigoplus \limits_{j\preceq x} f(j)</tex>. <br/> | ||
+ | То есть при <tex>wt(x) = k</tex> формула также выполняется, значит при любых <tex> x </tex> выполняется <tex>\alpha _{x} = \bigoplus \limits_{j\preceq x} f(j)</tex>. | ||
}} | }} | ||
− | |||
− | |||
<br/> | <br/> | ||
− | + | Отображение <tex> f \mapsto \alpha</tex> отображение также называется '''преобразованием Мёбиуса'''. | |
− | |||
− | |||
− | + | Видно, что <tex> (1) </tex> и <tex> (2) </tex> это одно и тоже преобразование. Значит, если применить '''преобразование Мёбиуса''' к функции, а затем вновь применить то же преобразование к получившейся функции, тогда вновь получим исходную функцию <tex>f</tex>. То есть '''преобразование Мёбиуса''' обратно самому себе. | |
− | |||
− | + | == Литература == | |
+ | * Логачёв О.А, Сальников А.А., Ященко В.В. '''Булевы фунции в теории кодирования и криптологии''' — МЦНМО, 2004. - 470с. — ISBN 5-94057-117-4. |
Версия 21:16, 15 октября 2010
Эта статья находится в разработке!
Пусть задана булева функция полинома Жегалкина, притом единственным образом. Пусть , и введем обозначение / Тогда полином Жегалкина можно записать как: , где .
Множество коэффициентов можно рассматривать как функцию , заданной на множестве индексов , то есть .
Очевидно, функцию
можно записать и следующим образом: если если если .Тут запись
Найдем отображение (То есть такое, которое по заданной функции вычисляет значения всех коэффциентов).
Теорема: |
Пусть задана функция . Тогда функцию можно найти по формуле: . |
Доказательство: |
Докажем при помощи индукции по количеству единиц в векторе Рассмотрим сумму |
Отображение отображение также называется преобразованием Мёбиуса.
Видно, что
и это одно и тоже преобразование. Значит, если применить преобразование Мёбиуса к функции, а затем вновь применить то же преобразование к получившейся функции, тогда вновь получим исходную функцию . То есть преобразование Мёбиуса обратно самому себе.Литература
- Логачёв О.А, Сальников А.А., Ященко В.В. Булевы фунции в теории кодирования и криптологии — МЦНМО, 2004. - 470с. — ISBN 5-94057-117-4.