Алгоритм Бржозовского — различия между версиями
(→Заключение) |
(→Литература) |
||
Строка 48: | Строка 48: | ||
==Литература== | ==Литература== | ||
* [http://sovietov.com/txt/minfa/minfa.html Алгоритм Бржозовского для минимизации конечного автомата] | * [http://sovietov.com/txt/minfa/minfa.html Алгоритм Бржозовского для минимизации конечного автомата] | ||
+ | * [http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary;jsessionid=EF3DD7271F6E8907A154A540D93F2B0C?doi=10.1.1.59.8276 Deian Tabakov, Moshe Y. Vardi. Experimental evaluation of classical automata constructions] | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Автоматы и регулярные языки]] | [[Категория: Автоматы и регулярные языки]] |
Версия 01:12, 27 декабря 2014
Задача: |
Пусть дан автомат . Требуется построить автомат с наименьшим количеством состояний, распознающий тот же язык, что и . |
Содержание
Алгоритм
Описание
Алгоритм минимизации конечных автоматов Бржозовского (Janusz A. (John) Brzozowski) выделяется, по крайней мере, следующими качествами:
- Он элегантен и весьма оригинален.
- Он эффективен.
- Он работает даже с недетерминированными конечными автоматами.
Обладая обычными процедурами обращения автомата, мы, с помощью идеи Бржозовского, можем немедленно приступить к минимизации заданного автомата. Для этого надо дважды провести его через обе вышеуказанные процедуры:
и детерминизации конечного, где
- это исходный КА,
- это процедура обращения КА,
- это процедура детерминизации КА,
- это минимизированный КА.
Корректность
Пример работы
- Исходный НКА ( ):
- Первый шаг алгоритма ( ):
- Второй шаг алгоритма ( ):
переименовывает состояния, после этого всегда является начальным состоянием
- Третий шаг алгоритма ( ):
После выполнения этого шага алгоритма оба состояния
и являются начальными.- Заключительный шаг алгоритма ( ):
Заключение
Самым эффективным алгоритмом минимизации принято считать алгоритм Хопкрофта, который, как и прочие традиционные алгоритмы, работает только с ДКА. Его асимптотическое время выполнения зависит от логарифма исходных данных. С другой стороны очевидно, что алгоритм Бржозовского в худшем случае будет обладать экспоненциальным временем выполнения, ведь этого требует процедура детерминизации, выполняемая дважды. На практике же наблюдается парадокс, алгоритм Бржозовского во многих случаях опережает прочие подходы к минимизации, включая и алгоритм Хопкрофта. В работе [6], сравнивающей оба алгоритма, показано, что алгоритм Бржозовского оказывается эффективнее алгоритма Хопкрофта для автоматов с большим числом переходов.
См. также
- Минимизация ДКА, алгоритм за O(n^2) с построением пар различимых состояний
- Минимизация ДКА, алгоритм Хопкрофта (сложность O(n log n))