Укладка графа с планарными компонентами вершинной двусвязности — различия между версиями
Строка 16: | Строка 16: | ||
Докажем утверждение теоремы для одной из компоненты связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. | Докажем утверждение теоремы для одной из компоненты связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. | ||
− | Итак пусть граф <tex>G</tex> связен. Если <tex>G = K_1</tex>, то <tex>G</tex> очевидно планерен, поэтому предположим, что <tex>|EG| \ge 1</tex> , а значит имеется по-крайней мере один блок в <tex>G</tex>. Рассмотрим связный подграф <tex>T</tex> графа блоков и точек сочленений графа <tex>G</tex> такой, что <tex>\forall v</tex> - т.с. <tex>G</tex> имеем <tex>deg(v) \ge 2</tex>. Из [[Граф блоков-точек сочленения#lemma1|леммы]] и из связности <tex>T</tex> | + | Итак пусть граф <tex>G</tex> связен. Если <tex>G = K_1</tex>, то <tex>G</tex> очевидно планерен, поэтому предположим, что <tex>|EG| \ge 1</tex> , а значит имеется по-крайней мере один блок в <tex>G</tex>. Рассмотрим связный подграф <tex>T</tex> графа блоков и точек сочленений графа <tex>G</tex> такой, что <tex>\forall v</tex> - т.с. <tex>G</tex> имеем <tex>deg(v) \ge 2</tex>. Из [[Граф блоков-точек сочленения#lemma1|леммы]] и из связности <tex>T</tex> получаем, что <tex>T</tex> — двудольное [[Дерево, эквивалентные определения|дерево]]. |
− | Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из блоков графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем | + | Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из блоков графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем говорить, что <tex>G'</tex> соответствует <tex>T</tex>). |
'''База индукции.''' | '''База индукции.''' | ||
Строка 30: | Строка 30: | ||
Пусть утверждение верно для <tex>|VT| < m</tex>. Рассмотрим <tex>T</tex>, для которого <tex>|VT| = m > 1</tex>, и соответствующий <tex>T</tex> подграф <tex>G'</tex> графа <tex>G</tex>. Докажем, что <tex>G'</tex> планарен. | Пусть утверждение верно для <tex>|VT| < m</tex>. Рассмотрим <tex>T</tex>, для которого <tex>|VT| = m > 1</tex>, и соответствующий <tex>T</tex> подграф <tex>G'</tex> графа <tex>G</tex>. Докажем, что <tex>G'</tex> планарен. | ||
− | Положим <tex>G_1</tex> — это блок графа <tex>G'</tex> являющийся висячей вершиной дерева <tex>T</tex>, a <tex>v</tex> — т.с. в <tex>G'</tex> смежная с <tex>G_1</tex> в <tex>T</tex>. <tex>G_1</tex> планарен по утверждению теоремы, т.к. блоки графа <tex>G'</tex> совпадают с блоками графа <tex>G</tex>. Заметим, что <tex>deg v > 0</tex>, т.к. <tex>v</tex> | + | Положим <tex>G_1</tex> — это блок графа <tex>G'</tex> являющийся висячей вершиной дерева <tex>T</tex>, a <tex>v</tex> — т.с. в <tex>G'</tex> смежная с <tex>G_1</tex> в <tex>T</tex>. <tex>G_1</tex> планарен по утверждению теоремы, т.к. блоки графа <tex>G'</tex> совпадают с блоками графа <tex>G</tex>. Заметим, что <tex>deg(v) > 0</tex>, т.к. <tex>v</tex> т.с., следовательно не висячая. Рассмотрим два случая: |
− | #<tex>deg(v) = 2</tex> в <tex>T</tex>. Обозначим за <tex>T'</tex> <tex>T\backslash {u,v}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме удаленной <tex>v</tex>) не уменьшилась, значит <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 2 = m - 2 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex> | + | #<tex>deg(v) = 2</tex> в <tex>T</tex>. Обозначим за <tex>T'</tex> <tex>T\backslash \{u,v\}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме удаленной <tex>v</tex>) не уменьшилась, значит <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 2 = m - 2 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex>u</tex> и <tex>v</tex> по очереди были висячими вершинами <tex>T</tex> и <tex>T\backslash \{u\}</tex>. |
− | #<tex>deg (v) > 2</tex> в <tex>T</tex>. Обозначим за <tex>T'</tex> <tex>T\backslash {u}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме <tex>v</tex>, для нее степень уменьшилась ровно на <tex>1</tex>) не уменьшилась, а для вершины <tex>v</tex> в <tex>T'</tex> верно, что <tex>deg v >= 2</tex>, то <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 1 = m - 1 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex>u</tex> была висячей вершиной в <tex>T</tex> | + | #<tex>deg (v) > 2</tex> в <tex>T</tex>. Обозначим за <tex>T'</tex> <tex>T\backslash \{u\}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме <tex>v</tex>, для нее степень уменьшилась ровно на <tex>1</tex>) не уменьшилась, а для вершины <tex>v</tex> в <tex>T'</tex> верно, что <tex>deg(v) >= 2</tex>, то <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 1 = m - 1 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex>u</tex> была висячей вершиной в <tex>T</tex> |
− | Рассмотрим подграф <tex>G_2</tex> графа <tex>G'</tex> соответствующий дереву <tex>T'</tex>. Поскольку T' | + | Рассмотрим подграф <tex>G_2</tex> графа <tex>G'</tex> соответствующий дереву <tex>T'</tex>. Поскольку <tex>T'</tex> связен, степени вершин в <tex>T'</tex> соответствующих т.с. графа <tex>G'</tex> удовлетворяют предположению индукции и, очевидно, также как и <tex>T</tex> граф <tex>T'</tex> является подграфом графа блоков и точек сочленений <tex>G</tex>, получим, что <tex>G_2</tex> планарен по предположению индукции, т.к. <tex>VT' < m</tex>. |
− | Из определения ребер дерева блоков и точек сочленений получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> | + | Из определения ребер дерева блоков и точек сочленений получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> имеют единственную общую точку {{---}} точку сочленения <tex>v</tex>. Поскольку множество блоков <tex>G'</tex> принадлежащих <tex>T</tex> состоит из <tex>G_1</tex> и множества блоков <tex>T'</tex>, то <tex>G' = G_1\cup G_2</tex>. <tex>G_1, G_2, G'</tex> удовлетворяют условию [[#l1|леммы I]], поэтому получим укладку <tex>G</tex> из укладок <tex>G_1</tex> и <tex>G_2</tex> так, как это сделано в доказательстве леммы. Получаем, что <tex>G'</tex> планарен. А значит предположение индукции верно. |
</div> | </div> | ||
− | Рассматривая в качестве <tex>T</tex> граф <tex>T_G</tex> блоков и точек сочленений <tex>G</tex>. По [[Граф блоков-точек сочленения|лемме]] <tex>T_G</tex> - дерево, следовательно каждая его вершина имеет степень как минимум <tex>1</tex>. Поскольку граф <tex>G<tex> содержит хотя бы один блок. Если это единственный блок, то <tex>T_G</tex> не содержит ни одной точки сочленения. Если граф <tex>G</tex> содержит хотя бы <tex>2</tex> блока и, следовательно | + | Рассматривая в качестве <tex>T</tex> граф <tex>T_G</tex> блоков и точек сочленений <tex>G</tex>. По [[Граф блоков-точек сочленения|лемме]] <tex>T_G</tex> {{---}} дерево, следовательно каждая его вершина имеет степень как минимум <tex>1</tex>. Поскольку граф <tex>G</tex> содержит хотя бы один блок. Если это единственный блок, то <tex>T_G</tex> не содержит ни одной точки сочленения. Если граф <tex>G</tex> содержит хотя бы <tex>2</tex> блока и, следовательно хотя бы одну точку сочленения, то <tex>T_G</tex> {{---}} дерево, содержащее хотя бы одно ребро. Поскольку в графе блоков и точек сочленений точки сочленений не могут быть висячими вершинами, то каждая из т.с. графа <tex>G</tex> принадлежащих <tex>T_G</tex> имеет степень как минимум <tex>2</tex>. Получаем, что <tex>T_G</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции, а значит <tex>G</tex> планарен. |
}} | }} | ||
− | '''Замечание.''' Доказательство теоремы непосредственно задает способ укладки графа <tex>G</tex>. | + | '''Замечание.''' Доказательство теоремы непосредственно задает способ укладки графа <tex>G</tex> из имеющихся укладок его блоков. |
==Источники== | ==Источники== | ||
− | Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы | + | Асанов М., Баранский В., Расин В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы {{---}} Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. |
− | H. Whitney - Non-separable and planar graphs - Trans. Amer. Math. Soc., 1932. | + | H. Whitney {{---}} Non-separable and planar graphs {{---}} Trans. Amer. Math. Soc., 1932. |
Версия 23:29, 21 октября 2010
Теорема (об укладке графа с планарными компонентами вершинной двусвязности): | ||||||
Доказательство: | ||||||
Докажем вспомогательную лемму.
Докажем утверждение теоремы для одной из компоненты связности графа леммы и из связности получаем, что — двудольное дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Если , то очевидно планерен, поэтому предположим, что , а значит имеется по-крайней мере один блок в . Рассмотрим связный подграф графа блоков и точек сочленений графа такой, что - т.с. имеем . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из блоков графа принадлежащих графу планарен (далее будем говорить, что соответствует ).База индукции. Если , то граф тривиальный. Его единственная вершина — это блок графа , который по утверждению теоремы планарен.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — это блок графа являющийся висячей вершиной дерева , a — т.с. в смежная с в . планарен по утверждению теоремы, т.к. блоки графа совпадают с блоками графа . Заметим, что , т.к. т.с., следовательно не висячая. Рассмотрим два случая:
Рассмотрим подграф графа соответствующий дереву . Поскольку связен, степени вершин в соответствующих т.с. графа удовлетворяют предположению индукции и, очевидно, также как и граф является подграфом графа блоков и точек сочленений , получим, что планарен по предположению индукции, т.к. .Из определения ребер дерева блоков и точек сочленений получаем, что графы леммы I, поэтому получим укладку из укладок и так, как это сделано в доказательстве леммы. Получаем, что планарен. А значит предположение индукции верно. и имеют единственную общую точку — точку сочленения . Поскольку множество блоков принадлежащих состоит из и множества блоков , то . удовлетворяют условию | ||||||
Замечание. Доказательство теоремы непосредственно задает способ укладки графа
из имеющихся укладок его блоков.Источники
Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001.
H. Whitney — Non-separable and planar graphs — Trans. Amer. Math. Soc., 1932.