Математическое ожидание случайной величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 19: Строка 19:
 
{{Утверждение
 
{{Утверждение
 
|about=о матожидании константы
 
|about=о матожидании константы
|statement=Математическое ожидание числа есть само число.
+
|statement=<tex>E(a) = a</tex>, где <tex>a \in R</tex> {{---}} константа.
<tex>E(a) = a</tex>, где <tex>a \in R</tex> {{---}} константа.
 
 
}}
 
}}
  
 
{{Утверждение
 
{{Утверждение
 
|about=о матожидании неравенств
 
|about=о матожидании неравенств
|statement=Математическое ожидание сохраняет неравенства. Если <tex>0 \leqslant a \leqslant b</tex>, и <tex>b</tex> {{---}} случайная величина с конечным математическим ожиданием, то математическое ожидание случайной величины <tex>a</tex> также конечно, и <tex>0 \leqslant E(a) \leqslant E(b)</tex>.
+
|statement=Если <tex>0 \leqslant \xi \leqslant \eta</tex>, и <tex>\eta</tex> {{---}} случайная величина с конечным математическим ожиданием, то математическое ожидание случайной величины <tex>\xi</tex> также конечно, и <tex>0 \leqslant E(\xi) \leqslant E(\eta)</tex>.
 
}}
 
}}
  
 
{{Утверждение
 
{{Утверждение
 
|about=о матожидании случайной величины на событии вероятности нуль
 
|about=о матожидании случайной величины на событии вероятности нуль
|statement=Математическое ожидание не зависит от поведения случайной величины на событии вероятности нуль. Если <tex>a = b</tex>, то <tex>E(a) = E(b)</tex>.
+
|statement=Если <tex>\xi = \eta</tex>, то <tex>E(\xi) = E(\eta)</tex>.
 
}}
 
}}
  
 
{{Утверждение
 
{{Утверждение
|about=о матожидании произведения
+
|about=о матожидании двух независимых случайных величин
|statement=Математическое ожидание произведения двух независимых случайных величин <tex>a</tex> и <tex>b</tex> равно произведению их математических ожиданий. <tex>E(a \cdot b) = E(a) \cdot E(b)</tex>
+
|statement=<tex>E(\xi \cdot \eta) = E(\xi) \cdot E(\eta)</tex>
 
}}
 
}}
 
==Линейность математического ожидания==  
 
==Линейность математического ожидания==  
Строка 97: Строка 96:
  
 
===Распределение Бернулли===
 
===Распределение Бернулли===
Случайная величина <tex>a</tex> имеет распределение Бернулли, если она принимает всего два значения: <tex>1</tex> и <tex>0</tex> с вероятностями <tex>p</tex> и <tex>q \equiv 1-p</tex> соответственно. Таким образом:
+
Случайная величина <tex>\xi</tex> имеет распределение Бернулли, если она принимает всего два значения: <tex>1</tex> и <tex>0</tex> с вероятностями <tex>p</tex> и <tex>q \equiv 1-p</tex> соответственно. Таким образом:
  
:<tex>P(a = 1) = p</tex>
+
:<tex>P(\xi = 1) = p</tex>
:<tex>P(a = 0) = q</tex>
+
:<tex>P(\xi = 0) = q</tex>
  
 
Тогда несложно догадаться, чему будет равно математическое ожидание:
 
Тогда несложно догадаться, чему будет равно математическое ожидание:
:<tex>E(a) = 1 \cdot p + 0 \cdot q = p</tex>
+
:<tex>E(\xi) = 1 \cdot p + 0 \cdot q = p</tex>
  
 
===Гипергеометрическое распределение===
 
===Гипергеометрическое распределение===
Строка 110: Строка 109:
 
Пусть имеется конечная совокупность, состоящая из <tex>N</tex> элементов. Предположим, что <tex>D</tex> из них обладают нужным нам свойством. Оставшиеся <tex>N-D</tex> этим свойством не обладают. Случайным образом из общей совокупности выбирается группа из <tex>n</tex> элементов. Пусть <tex>a</tex> {{---}} случайная величина, равная количеству выбранных элементов, обладающих нужным свойством. Тогда функция вероятности <tex>a</tex> имеет вид:
 
Пусть имеется конечная совокупность, состоящая из <tex>N</tex> элементов. Предположим, что <tex>D</tex> из них обладают нужным нам свойством. Оставшиеся <tex>N-D</tex> этим свойством не обладают. Случайным образом из общей совокупности выбирается группа из <tex>n</tex> элементов. Пусть <tex>a</tex> {{---}} случайная величина, равная количеству выбранных элементов, обладающих нужным свойством. Тогда функция вероятности <tex>a</tex> имеет вид:
  
:<tex>P_a(k) \equiv P(a = k) = \genfrac{}{}{1pt}{0}{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}</tex>,
+
:<tex>P_\xi(k) \equiv P(\xi = k) = \genfrac{}{}{1pt}{0}{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}</tex>,
 
где <tex>C_n^k \equiv \genfrac{}{}{1pt}{0}{n!}{k! \cdot (n-k)!}</tex> обозначает биномиальный коэффициент.
 
где <tex>C_n^k \equiv \genfrac{}{}{1pt}{0}{n!}{k! \cdot (n-k)!}</tex> обозначает биномиальный коэффициент.
  
Гипергеометрическое распределение обозначается <tex> a \sim \mathrm{HG}(D,N,n)</tex>.
+
Гипергеометрическое распределение обозначается <tex> \xi \sim \mathrm{HG}(D,N,n)</tex>.
  
 
Формула математического ожидания для гипергеометрического распределения имеет вид:
 
Формула математического ожидания для гипергеометрического распределения имеет вид:
:<tex>E(a) = \genfrac{}{}{1pt}{0}{n \cdot D}{N}</tex>
+
:<tex>E(\xi) = \genfrac{}{}{1pt}{0}{n \cdot D}{N}</tex>
  
 
==Смотри также==
 
==Смотри также==

Версия 20:07, 15 января 2015

Математическое ожидание случайной величины

Определение:
Математическое ожидание (англ. mathematical expectation) ([math]E\xi[/math]) — мера среднего значения случайной величины, равна [math]E\xi = \sum \xi(\omega)p(\omega)[/math]


Теорема:
[math]\sum\limits_{\omega\epsilon\Omega} \xi(\omega)p(\omega) = \sum\limits_a a p(\xi = a)[/math]
Доказательство:
[math]\triangleright[/math]
[math]\sum\limits_a \sum\limits_{\omega|\xi(\omega) = a} \xi(\omega)p(\omega) = \sum\limits_a a \sum\limits_{\omega|\xi(\omega)=a}p(\omega) = \sum\limits_a a p(\xi = a)[/math]
[math]\triangleleft[/math]

Пример

Пусть наше вероятностное пространство — «честная кость»

[math] \xi(i) = i [/math]

[math] E\xi = 1\cdot \genfrac{}{}{1pt}{0}{1}{6}+2\cdot \genfrac{}{}{1pt}{0}{1}{6} \dots +6\cdot \genfrac{}{}{1pt}{0}{1}{6} = 3.5[/math]

Свойства математического ожидания

Утверждение (о матожидании константы):
[math]E(a) = a[/math], где [math]a \in R[/math] — константа.
Утверждение (о матожидании неравенств):
Если [math]0 \leqslant \xi \leqslant \eta[/math], и [math]\eta[/math] — случайная величина с конечным математическим ожиданием, то математическое ожидание случайной величины [math]\xi[/math] также конечно, и [math]0 \leqslant E(\xi) \leqslant E(\eta)[/math].
Утверждение (о матожидании случайной величины на событии вероятности нуль):
Если [math]\xi = \eta[/math], то [math]E(\xi) = E(\eta)[/math].
Утверждение (о матожидании двух независимых случайных величин):
[math]E(\xi \cdot \eta) = E(\xi) \cdot E(\eta)[/math]

Линейность математического ожидания

Теорема:
Математическое ожидание [math]E[/math] линейно.
Доказательство:
[math]\triangleright[/math]
  1. [math]E(\xi + \eta) = {\sum_w \limits}(\xi(w) + \eta(w))p(w) = {\sum_w \limits}\xi(w)p(w) + {\sum_w \limits}\eta(w)p(w) = E(\xi) + E(\eta) [/math]
  2. [math]E(\alpha\xi) = {\sum_w \limits}\alpha\xi(w) = \alpha{\sum_w \limits}\xi(w) = \alpha E(\xi)[/math], где [math]\alpha[/math] — действительное число
[math]\triangleleft[/math]

Использование линейности

Рассмотрим три примера

Пример 1

Найти математическое ожидание суммы цифр на случайной кости домино.

Пусть [math] \xi [/math] — случайная величина, которая возвращает первое число на кости домино, а [math] \eta [/math] — возвращает второе число. Очевидно, что [math] E(\xi)= E(\eta)[/math]. Посчитаем [math]E(\xi)[/math].

[math]E(\xi)={\sum_{i=0}^6 \limits}i \cdot p(\xi=i)={\sum_{i=0}^6 \limits}i \cdot \genfrac{}{}{1pt}{0}{1}{7}=3[/math]

Получаем ответ [math]E(\xi+\eta)=2E(\xi)=6[/math]

Пример 2

Пусть у нас есть строка [math]s[/math]. Строка [math]t[/math] генерируется случайным образом так, что два подряд идущих символа неравны. Какое математическое ожидание количества совпавших символов? Считать что размер алфавита равен [math]k[/math], а длина строки [math]n[/math].

Рассмотрим случайные величины [math]\xi^i[/math] — совпал ли у строк [math] i [/math]-тый символ. Найдем математическое ожидание этой величины [math]E(\xi^i)=0 \cdot p(\xi^i=0)+1 \cdot p(\xi^i=1)=p(s[i]=t[i])[/math] где [math]s[i],t[i][/math][math]i[/math]-тые символы соответствующих строк. Так как появление каждого символа равновероятно, то [math]p(s[i]=t[i])=\genfrac{}{}{1pt}{0}{1}{k}[/math].

Итоговый результат: [math]E(\xi)={\sum_{i=1}^n \limits}E(\xi^i)=\genfrac{}{}{1pt}{0}{n}{k} [/math]

Пример 3

Найти математическое ожидание количества инверсий на всех перестановках чисел от [math]1[/math] до [math]n[/math].

Пусть [math] \xi [/math] — случайная величина, которая возвращает количество инверсий в перестановке.

Очевидно, что вероятность любой перестановки равна [math] \genfrac{}{}{1pt}{0}{1}{n!} [/math]

Тогда [math] E\xi = \genfrac{}{}{1pt}{0}{1}{n!}\cdot{\sum_{i=1}^{n!} \limits}E(\xi^i) [/math]

Пусть [math] P = (p_1,p_2,\dots,p_n)[/math] является перестановкой чисел [math] 1, 2,\dots, n[/math].

Тогда [math] A = (p_n, p_{n-1}, \dots, p_1) [/math] является перевернутой перестановкой [math] P [/math].

Докажем, что количество инверсий в этих двух перестановках равно [math] \genfrac{}{}{1pt}{0}{n\cdot(n-1)}{2} [/math]

Рассмотрим все пары [math] 1 \leqslant i \lt j \leqslant n [/math], таких пар всего [math] \genfrac{}{}{1pt}{0}{n\cdot(n-1)}{2} [/math]. Тогда пара этих чисел образуют инверсию или в [math]P[/math], или в [math]A[/math]. Если [math]j[/math] стоит раньше [math]i[/math] в перестановке [math]P[/math], то [math]j[/math] будет стоять после [math]i[/math] и уже не будет давать инверсию. Аналогично, если [math]j[/math] стоит раньше [math]i[/math] в перестановке [math]A[/math].

Всего таких пар из перестановки и перевернутой перестановки будет [math] \genfrac{}{}{1pt}{0}{n!}{2} [/math].

Итого: [math] E\xi = \genfrac{}{}{1pt}{0}{1}{n!}\cdot\genfrac{}{}{1pt}{0}{n\cdot(n-1)}{2}\cdot\genfrac{}{}{1pt}{0}{n!}{2} = \genfrac{}{}{1pt}{0}{n\cdot(n-1)}{4} [/math]

Примеры распределений

Распределение Бернулли

Случайная величина [math]\xi[/math] имеет распределение Бернулли, если она принимает всего два значения: [math]1[/math] и [math]0[/math] с вероятностями [math]p[/math] и [math]q \equiv 1-p[/math] соответственно. Таким образом:

[math]P(\xi = 1) = p[/math]
[math]P(\xi = 0) = q[/math]

Тогда несложно догадаться, чему будет равно математическое ожидание:

[math]E(\xi) = 1 \cdot p + 0 \cdot q = p[/math]

Гипергеометрическое распределение

Гипергеометрическое распределение в теории вероятностей моделирует количество удачных выборок без возвращения из конечной совокупности.

Пусть имеется конечная совокупность, состоящая из [math]N[/math] элементов. Предположим, что [math]D[/math] из них обладают нужным нам свойством. Оставшиеся [math]N-D[/math] этим свойством не обладают. Случайным образом из общей совокупности выбирается группа из [math]n[/math] элементов. Пусть [math]a[/math] — случайная величина, равная количеству выбранных элементов, обладающих нужным свойством. Тогда функция вероятности [math]a[/math] имеет вид:

[math]P_\xi(k) \equiv P(\xi = k) = \genfrac{}{}{1pt}{0}{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}[/math],

где [math]C_n^k \equiv \genfrac{}{}{1pt}{0}{n!}{k! \cdot (n-k)!}[/math] обозначает биномиальный коэффициент.

Гипергеометрическое распределение обозначается [math] \xi \sim \mathrm{HG}(D,N,n)[/math].

Формула математического ожидания для гипергеометрического распределения имеет вид:

[math]E(\xi) = \genfrac{}{}{1pt}{0}{n \cdot D}{N}[/math]

Смотри также

Источники информации