Задача коммивояжера, ДП по подмножествам — различия между версиями
(→Оптимизация решения) |
|||
Строка 39: | Строка 39: | ||
Сама динамика будет такая: <br> | Сама динамика будет такая: <br> | ||
− | <tex>d[mask][i] | + | <tex> |
− | + | d[mask][i] = \left\{\begin{array}{llcl} | |
− | + | 1&;\ |mask| = 1,\ mask_i = 1\\ | |
+ | \bigvee_{mask[j]=1, (j, i) \in E}\limits d[mask \oplus 2^i][j] &;\ |mask| > 1,\ mask_i= 1 \\ | ||
+ | 0&;\ во всех остальных случаях\\ | ||
+ | \end{array}\right. | ||
+ | </tex> | ||
Это решение требует <tex>O(2^nn)</tex> памяти и <tex>O(2^nn^2)</tex> времени. Эту оценку можно улучшить, если изменить динамику следующим образом. | Это решение требует <tex>O(2^nn)</tex> памяти и <tex>O(2^nn^2)</tex> времени. Эту оценку можно улучшить, если изменить динамику следующим образом. | ||
Строка 48: | Строка 52: | ||
Тогда динамика перепишется следующим образом: <br> | Тогда динамика перепишется следующим образом: <br> | ||
− | <tex>d'[mask] | + | <tex> |
− | + | d'[mask][i] = \left\{\begin{array}{llcl} | |
− | + | 2^i&;\ |mask| = 1,\ mask_i = 1\\ | |
+ | \sum_{j \in [0..n-1]}\limits 2^i \cdot ((d[mask \oplus 2^i] \& M_i) \neq 0?1:0) &;\ |mask| > 1 \\ | ||
+ | 0&;\ во всех остальных случаях\\ | ||
+ | \end{array}\right. | ||
+ | </tex> | ||
Особое внимание следует уделить выражению <tex>d[mask \oplus 2^i] \& M_i</tex> . Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве <tex>mask</tex> без вершины <tex>i</tex>, а вторая — подмножество вершин, связанных с <tex>i</tex> ребром. Если эти множества пересекаются хотя бы по одной вершине (их <tex>\&</tex> не равен <tex>0</tex>), то, как нетрудно понять, в <tex>mask</tex> существует гамильтонов путь, заканчивающийся в вершине <tex>i</tex>. | Особое внимание следует уделить выражению <tex>d[mask \oplus 2^i] \& M_i</tex> . Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве <tex>mask</tex> без вершины <tex>i</tex>, а вторая — подмножество вершин, связанных с <tex>i</tex> ребром. Если эти множества пересекаются хотя бы по одной вершине (их <tex>\&</tex> не равен <tex>0</tex>), то, как нетрудно понять, в <tex>mask</tex> существует гамильтонов путь, заканчивающийся в вершине <tex>i</tex>. |
Версия 22:07, 15 января 2015
Задача: |
Задача о коммивояжере (англ. Travelling salesman problem, TSP) — задача, в которой коммивояжер должен посетить | городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?
Содержание
Варианты решения
NP-полнота задач о гамильтоновом цикле и пути в графах
Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все
всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших . Сложность алгоритма .Динамическое программирование по подмножествам (по маскам)
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам — дороги. Пусть в графе
вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.Зафиксируем начальную вершину
и будем искать гамильтонов цикл наименьшей стоимости — путь от до , проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор не имеет значения. Поэтому будем считать .Подмножества вершин будем кодировать битовыми векторами, обозначим
значение -ого бита в векторе .Обозначим
как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. уже найденный оптимальный путь от -ой вершины до -ой, проходящий через те вершины, где . Если ,то эти вершины еще не посещены).- Начальное состояние — когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен (т.е. и ).
- Для остальных состояний ( или ) перебираем все возможные переходы в -ую вершину из любой посещенной ранее и выбираем минимальный результат.
- Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).
Стоимостью минимального гамильтонова цикла в исходном графе будет значение
— стоимость пути из -й вершины в -ю, при необходимости посетить все вершины. Данное решение требует памяти и времени.Для того, чтобы восстановить сам путь, воспользуемся соотношением
, которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .Оптимизация решения
Пусть
содержит булево значение — существует ли в подмножества гамильтонов путь, заканчивающийся в вершине .Сама динамика будет такая:
Это решение требует
памяти и времени. Эту оценку можно улучшить, если изменить динамику следующим образом.Пусть теперь
хранит маску подмножества всех вершин, для которых существует гамильтонов путь в подмножестве , заканчивающихся в этой вершине. Другими словами, сожмем предыдущую динамику: будет равно . Для графа выпишем масок , для каждой вершины задающие множество вершин, которые связаны ребром в данной вершиной. То есть .Тогда динамика перепишется следующим образом:
Особое внимание следует уделить выражению
. Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве без вершины , а вторая — подмножество вершин, связанных с ребром. Если эти множества пересекаются хотя бы по одной вершине (их не равен ), то, как нетрудно понять, в существует гамильтонов путь, заканчивающийся в вершине .Окончательная проверка состоит в сравнении
c .Это решение использует
памяти и имеет асимптотику .Реализация
Прежде чем писать код, скажем пару слов о порядке обхода состояний. Обозначим за
количество единиц в маске (иначе говоря количество пройденных вершин не считая текущей). Тогда, поскольку при рассмотрении состояния мы смотрим на состояния, и , то состояния с большим должны быть посещены позже, чтобы к моменту вычисления текущего состояния были вычислены все те, которые используются для его подсчёта. Однако если использовать рекурсию, об этом можно не беспокоиться (и сэкономить немало кода, времени и памяти).
//Все переменные используются из описания алгоритма,= бесконечность function findCheapest(i, mask): if d[i][mask] != return d[i][mask] for j = 0 .. n - 1 if w(i, j) существует and j-ый бит mask == 1 d[i][mask] = min(d[i][mask], findCheapest(j, mask - 2 ** j) + w(i, j)) return d[i][mask] for i = 0 .. n - 1 for mask = 0 .. 2 ** n - 1 d[i][mask] = d[0][0] = 0; ans = findCheapest (0, 2 ** n - 1) if ans == exit
Дальше ищем сам путь:
i = 0 mask = 2 ** n - 1 path.push(0) while mask != 0 for j = 0 .. n - 1 if w(i, j) существует and j-ый бит mask == 1 and d[i][mask] == d[j][mask - 2 ** j] + w(i, j) path.push(j) i = j mask = mask - 2 ** j continue
См. также
- Кратчайший путь в ациклическом графе
- Задача о наибольшей общей подпоследовательности
- Задача о наибольшей возрастающей подпоследовательности
- Задача о рюкзаке
- Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре
- Гамильтоновы графы
Источники информации
- Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4