Дерево Фенвика — различия между версиями
Строка 13: | Строка 13: | ||
<tex> F(i) = i - 2^{h(i)} + 1, </tex> где <tex> h(i) </tex> - количество единиц в конце бинарной записи числа <tex> i </tex>. | <tex> F(i) = i - 2^{h(i)} + 1, </tex> где <tex> h(i) </tex> - количество единиц в конце бинарной записи числа <tex> i </tex>. | ||
− | Эта функция задается простой формулой: <tex> F(i) = i \And (i + 1) </tex>. | + | Эта функция задается простой формулой: <tex> F(i) = i \And (i + 1) </tex>, где <tex> \And </tex> — это операция побитового логического "И". |
== Запрос изменения элемента == | == Запрос изменения элемента == | ||
Строка 25: | Строка 25: | ||
{{Лемма | {{Лемма | ||
− | |statement= Можно перебрать все <tex> i </tex>, попадающие под неравенство по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. | + | |statement= Можно перебрать все <tex> i </tex>, попадающие под неравенство по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического "ИЛИ". |
|proof=Первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) < i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним, а <tex> i </tex> увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с <tex> k </tex>, то формула <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> нарушит неравенство, потому что либо само <tex> i </tex> будет меньше, чем k, либо <tex> F(i) </tex> станет больше, чем <tex> k </tex>. Таким образом, перебраны будут только нужные элементы}} | |proof=Первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) < i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним, а <tex> i </tex> увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с <tex> k </tex>, то формула <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> нарушит неравенство, потому что либо само <tex> i </tex> будет меньше, чем k, либо <tex> F(i) </tex> станет больше, чем <tex> k </tex>. Таким образом, перебраны будут только нужные элементы}} | ||
− | Все <tex>i</tex> мы можем получить следующим образом : <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> | + | Все <tex>i</tex> мы можем получить следующим образом : <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу. |
{| style="background-color:#CCC;margin:0.5px" | {| style="background-color:#CCC;margin:0.5px" |
Версия 16:44, 26 марта 2015
Определение: |
Дерево Фе́нвика (Binary indexed tree) — структура данных, требующая
| памяти и позволяющая эффективно (за )
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
Деревом Фенвика будем называть массив из элементов: , где - некоторая функция.
От выбора функции зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать обе операции за время .
где - количество единиц в конце бинарной записи числа . Эта функция задается простой формулой: , где — это операция побитового логического "И".
Содержание
Запрос изменения элемента
Лемма: |
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменять величину на величину .
Необходимо изменить элементы дерева , для которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Можно перебрать все , попадающие под неравенство по формуле , где — это операция побитового логического "ИЛИ". |
Доказательство: |
Первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним, а увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с , то формула нарушит неравенство, потому что либо само будет меньше, чем k, либо станет больше, чем . Таким образом, перебраны будут только нужные элементы
Все
мы можем получить следующим образом : . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа .
Напишем функцию, которая будет изменять элемент на , и при этом меняет соответствующие частичные суммы.
modify(i, d): while i < N t[i] += d i = i | (i + 1)
Запрос получения суммы на префиксе
В качестве бинарной операции
Обозначим . Тогда .
Лемма: |
входит в сумму для , если . |
Для доказательства леммы рассмотрим битовую запись следующих чисел:
Реализация
Приведем код функции
на C++:
int sum(int i)
{
int result = 0;
while (i >= 0)
{
result += t[i];
i = f(i) - 1;
}
return result;
}