Левосторонняя куча — различия между версиями
(→Условие кучи) |
Shersh (обсуждение | вклад) м (→Построение кучи за O(n): исправлены дроби и скобки) |
||
Строка 78: | Строка 78: | ||
Пусть на <tex> i </tex>-ом шаге алгоритма в нашем списке остались только кучи размера <tex> 2^i </tex>. На нулевом шаге у нас <tex> n </tex> куч из одного элемента, и на каждом следующем количество куч будет уменьшаться вдвое, а число вершин в куче будет увеличиваться вдвое. Слияние двух куч из <tex> n_i </tex> элементов выполняется за <tex> O(\log{n_i}) </tex>. Поэтому построение будет выполняться за | Пусть на <tex> i </tex>-ом шаге алгоритма в нашем списке остались только кучи размера <tex> 2^i </tex>. На нулевом шаге у нас <tex> n </tex> куч из одного элемента, и на каждом следующем количество куч будет уменьшаться вдвое, а число вершин в куче будет увеличиваться вдвое. Слияние двух куч из <tex> n_i </tex> элементов выполняется за <tex> O(\log{n_i}) </tex>. Поэтому построение будет выполняться за | ||
− | <tex | + | <tex > |
− | \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \ | + | \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \dfrac{n \cdot \log{n_i}}{2^i} = |
− | n \cdot \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \ | + | n \cdot \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \dfrac{\log{2^i}}{2^i} = |
− | n \cdot \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \ | + | n \cdot \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \dfrac{i}{2^i} |
</tex> | </tex> | ||
Покажем, что сумма {{---}} <tex> O(1) </tex>, тогда и алгоритм будет выполняться за <tex> O(n) </tex>. Найдём сумму [[Определение суммы числового ряда|ряда]], заменив его на эквивалентный [[Определение функционального ряда|функциональный]]: | Покажем, что сумма {{---}} <tex> O(1) </tex>, тогда и алгоритм будет выполняться за <tex> O(n) </tex>. Найдём сумму [[Определение суммы числового ряда|ряда]], заменив его на эквивалентный [[Определение функционального ряда|функциональный]]: | ||
− | <tex | + | <tex> |
− | \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \ | + | \sum\limits_{i = 1}^{\left\lceil \log{n} \right\rceil} \dfrac{i}{2^i} < \sum\limits_{i = 1}^{\infty } \dfrac{i}{2^i} \\ |
f(x) = \sum\limits_{i = 1}^{\infty } \Bigl. i \cdot x^i \Bigr|_{x = \frac{1}{2}} \\ | f(x) = \sum\limits_{i = 1}^{\infty } \Bigl. i \cdot x^i \Bigr|_{x = \frac{1}{2}} \\ | ||
− | ~\ | + | ~\dfrac{f(x)}{x} = \sum\limits_{i = 1}^{\infty } i \cdot x^{i - 1} = \sum\limits_{i = 1}^{\infty } (x^i)' = \left(\sum\limits_{i = 1}^{\infty } x^i \right)' \\ |
− | ~\int\ | + | ~\int\dfrac{f(x)}{x} = \sum\limits_{i = 1}^{\infty } x^i =~\dfrac{1}{1 - x} - 1 \\ |
− | ~\ | + | ~\dfrac{f(x)}{x} = \left(\dfrac{1}{1 - x} - 1\right)' = \dfrac{1}{(1 - x)^2} \\ |
− | ~f(x) = \ | + | ~f(x) = \dfrac{x}{(1 - x)^2} |
</tex> | </tex> | ||
− | После подстановки <tex> x = \ | + | После подстановки <tex> x = \dfrac{1}{2} </tex> получаем, что сумма равна <tex> 2 </tex>. Следовательно, построение кучи таким образом произойдёт за <tex> O(n) </tex>. |
+ | |||
==Преимущества левосторонней кучи== | ==Преимущества левосторонней кучи== | ||
Нигде не делается уничтожающих присваиваний. Не создается новых узлов в <tex>\mathrm{merge}</tex>. Эта реализация слияния является функциональной — ее легко реализовать на функциональном языке программирования. Также данная реализация <tex>\mathrm{merge}</tex> является персистентной. | Нигде не делается уничтожающих присваиваний. Не создается новых узлов в <tex>\mathrm{merge}</tex>. Эта реализация слияния является функциональной — ее легко реализовать на функциональном языке программирования. Также данная реализация <tex>\mathrm{merge}</tex> является персистентной. |
Версия 13:48, 30 декабря 2015
Содержание
Условие кучи
Левосторонние деревья были изобретены Кларком Крейном (Clark Allan Crane), свое название они получили из-за того, что левое поддерево обычно длиннее правого.
Определение: |
Левосторонняя куча (англ. leftist heap) — двоичное левосторонее дерево (не обязательно сбалансированное), но с соблюдением порядка кучи (heap order). |
Свободной позицией назовем место в дереве, куда может быть вставлена новая вершина. Само дерево будет являться свободной позицией, если оно не содержит вершин. Если же у какой-то внутренней вершины нет сына, то на его месте — свободная позиция.
Лемма (1): |
В двоичном дереве с вершинами существует свободная позиция на глубине не более . |
Доказательство: |
Если бы все свободные позиции были на глубине более логарифма, то мы получили бы полное дерево с количеством вершин более | .
Левосторонняя куча накладывает на двоичное дерево дополнительное условие. Ближайшая свободная позиция должна быть самой правой позицией в дереве. То есть помимо обычного условия кучи выполняется следующее:
Определение: |
Условие левосторонней кучи. Пусть | — расстояние от вершины до ближайшей свободной позиции в ее поддереве. У пустых позиций . Тогда потребуем для любой вершины .
Если для какой- то вершины это свойство не выполняется, то это легко устраняется: можно за поменять местами левого и правого ребенка, что не повлияет на порядок кучи.
Поддерживаемые операции
merge
Слияние двух куч.
LeftistHeap merge(x, y): // x, y — корни двух деревьев if x ==: return y if y == : return x if y.key < x.key: swap(x, y) // Воспользуемся тем, что куча левосторонняя. Правая ветка — самая короткая и не длиннее логарифма. // Пойдем направо и сольем правое поддерево с у. x.right = merge(x.right, y) // Могло возникнуть нарушение левостороннести кучи if dist(x.right) > dist(x.left): swap(x.left, x.right) dist(x) = min(dist(x.left), dist(x.right)) + 1 // пересчитаем расстояние до ближайшей свободной позиции return x // Каждый раз идем из уже существующей вершины только в правое поддерево — не более логарифма вызовов (по лемме)
Левосторонняя куча относится к сливаемым кучам: остальные операции легко реализуются с помощью операции слияния.
insert
Вставка новой вершины в дерево. Новое левостороннее дерево, состоящее из одной вершины, сливается с исходным.
extractMin
Как и у любой другой двоичной кучи, минимум хранится в корне. Извлекаем минимальное значение, удаляем корень, сливаем левое и правое поддерево корня. Возвращает пару из извлеченной вершины и новой кучи.
delete
Аналогично удаляется любой элемент — на его место ставится результат слияния его детей. Но так просто любой элемент удалить нельзя — на пути от этого элемента к корню может нарушиться левостороннесть кучи. А до корня мы дойти не можем, так как элемент может находиться на линейной глубине. Поэтому удаление реализуется с помощью
. Уменьшаем ключ до , затем извлекаем минимальное значение.decreaseKey
Лемма (2): |
У левостороннего дерева с правой ветвью длинны количество узлов . |
Доказательство: |
Индукция по h. При — верно.При По индукции число узлов в каждом из них больше или равно левое и правое поддеревья исходного дерева левосторонние, а от их корней больше либо равен . , тогда во всем дереве узлов. |
Алгоритм
- Найдем узел , вырежем поддерево с корнем в этом узле.
- Пройдем от предка вырезанной вершины, при этом пересчитывая . Если левого сына вершины меньше правого, то меняем местами поддеревья.
- Уменьшаем ключ данного узла и сливаем два дерева: исходное и вырезанное.
Лемма (3): |
Нужно транспонировать не более поддеревьев. |
Доказательство: |
Длина пути от вершины до корня может быть и | , но нам не нужно подниматься до корня — достаточно подняться до вершины, у которой свойство левосторонней кучи уже выполнено. Транспонируем только если , но . На каждом шаге, если нужно транспонируем и увеличиваем , тогда увеличится до и обменов уже не надо будет делать.
Таким образом, мы восстановили левостороннесть кучи за
. Поэтому асимптотика операции — .Построение кучи за O(n)
Храним список левосторонних куч. Пока их количество больше
, из начала списка достаем две кучи, сливаем их и кладем в конец списка.Покажем, почему это будет работать за
.Пусть на
-ом шаге алгоритма в нашем списке остались только кучи размера . На нулевом шаге у нас куч из одного элемента, и на каждом следующем количество куч будет уменьшаться вдвое, а число вершин в куче будет увеличиваться вдвое. Слияние двух куч из элементов выполняется за . Поэтому построение будет выполняться за
Покажем, что сумма — ряда, заменив его на эквивалентный функциональный:
, тогда и алгоритм будет выполняться за . Найдём сумму
После подстановки
получаем, что сумма равна . Следовательно, построение кучи таким образом произойдёт за .Преимущества левосторонней кучи
Нигде не делается уничтожающих присваиваний. Не создается новых узлов в
. Эта реализация слияния является функциональной — ее легко реализовать на функциональном языке программирования. Также данная реализация является персистентной.