Представление вещественных чисел — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Диапазон чисел, представимых в формате с плавающей запятой)
(Cсылки)
Строка 213: Строка 213:
 
* [http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE#.D0.9F.D1.80.D0.B5.D0.B4.D1.81.D1.82.D0.B0.D0.B2.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.87.D0.B8.D1.81.D0.B5.D0.BB_.D0.B2_.D0.BF.D0.B0.D0.BC.D1.8F.D1.82.D0.B8_.D0.BA.D0.BE.D0.BC.D0.BF.D1.8C.D1.8E.D1.82.D0.B5.D1.80.D0.B0 http://ru.wikipedia.org/wiki/Число]
 
* [http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE#.D0.9F.D1.80.D0.B5.D0.B4.D1.81.D1.82.D0.B0.D0.B2.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.87.D0.B8.D1.81.D0.B5.D0.BB_.D0.B2_.D0.BF.D0.B0.D0.BC.D1.8F.D1.82.D0.B8_.D0.BA.D0.BE.D0.BC.D0.BF.D1.8C.D1.8E.D1.82.D0.B5.D1.80.D0.B0 http://ru.wikipedia.org/wiki/Число]
 
*[http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE_%D0%BF%D0%BE%D0%BB%D0%BE%D0%B2%D0%B8%D0%BD%D0%BD%D0%BE%D0%B9_%D1%82%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D0%B8 http://ru.wikipedia.org/wiki/Число_половинной_точности]
 
*[http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE_%D0%BF%D0%BE%D0%BB%D0%BE%D0%B2%D0%B8%D0%BD%D0%BD%D0%BE%D0%B9_%D1%82%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D0%B8 http://ru.wikipedia.org/wiki/Число_половинной_точности]
 +
*[http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE_%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D1%80%D0%BD%D0%BE%D0%B9_%D1%82%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D0%B8 http://ru.wikipedia.org/wiki/Число_одинарной_точности]

Версия 04:52, 1 ноября 2010

Вещественные числа обычно представляются в виде чисел с плавающей запятой.


Определение:
Плавающая запятая — форма представления дробных чисел, в которой число хранится в форме мантиссы и показателя степени. При этом число с плавающей запятой имеет фиксированную относительную точность и изменяющуюся абсолютную. Наиболее часто используемое представление утверждено в стандарте IEEE 754.

При этом лишь некоторые из вещественных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями.

В наиболее распространённом формате число с плавающей запятой представляется в виде последовательности битов, часть из которых кодирует собой мантиссу числа, другая часть — показатель степени, и ещё один бит используется для указания знака числа, 0 - если число положительное, 1 - если число отрицательное.

Нормальная форма и нормализованная форма

Нормальной формой числа с плавающей запятой называется такая форма, в которой мантисса (без учёта знака) находится на полуинтервале [0; 1). Такая форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, 0,0001 можно записать в 4 формах — 0,0001×100, 0,001×10−1, 0,01×10−2, 0,1×10−3), поэтому распространена также другая форма записи — нормализованная, в которой мантисса десятичного числа принимает значения от 1 (включительно) до 10 (не включительно), а мантисса двоичного числа принимает значения от 1 (включительно) до 2 (не включительно). В такой форме любое число (кроме 0) записывается единственным образом. Недостаток заключается в том, что в таком виде невозможно представить 0, поэтому представление чисел в информатике предусматривает специальный признак (бит) для числа 0. Так как старший разряд (целая часть числа) мантиссы двоичного числа (кроме 0) в нормализованном виде равен «1», то при записи мантиссы числа в эвм старший разряд можно не записывать, что и используется в стандарте IEEE 754. В позиционных системах счисления с основанием большим, чем 2 (в троичной, четверичной и др.), этого свойства нет.

Диапазон чисел, представимых в формате с плавающей запятой

Диапазон чисел, которые можно записать данным способом, зависит от количества бит, отведённых для представления мантиссы и показателя. Пара значений показателя зарезервирована для обеспечения возможности представления специальных чисел. К ним относятся значения NaN (Not a Number, не число) и +/-INF (Infinity, бесконечность), получающихся в результате операций типа деления на ноль нуля, положительных и отрицательных чисел.

Число́ полови́нной то́чности  — компьютерный формат представления чисел, занимающий в памяти половину компьютерного слова (в случае 32-битного компьютера — 16 бит или 2 байта). Диапазон значений ± 2−24(5.96E-8) — 65504. Приблизительная точность — 3 знака (10 двоичных знаков, log10(211)).

Знак
Экспо-
нента
Мантисса
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 8 7 0

Число́ одина́рной то́чности — компьютерный формат представления чисел, занимающий в компьютерная памяти одну ячейку (машинное слово; в случае 32-битного компьютера — 32 бита или 4 байта). Как правило, обозначает формат числа с плавающей точкой стандарта IEEE 754.

Знак
Экспонента Мантисса
0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 24 23 16 15 8 7 0

Число́ двойно́й то́чности — компьютерный формат представления чисел, занимающий в памяти две последовательных ячейки (компьютерных слова; в случае 32-битного компьютера — 64 бита или 8 байт). Как правило, обозначает формат числа с плавающей запятой стандарта IEEE 754.

Знак
(11 бит)
Экспонента
(52 бита)
Мантисса
                                                                                                                               
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Cсылки