Мастер-теорема — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Формулировка и доказательство мастер-теоремы)
Строка 40: Строка 40:
  
 
}}
 
}}
Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать следующим образом: имеется задача размера <tex> n </tex> , алгоритм разбивает её на <tex> a </tex> подзадач размера <tex> \dfrac{n}{b} </tex> , тратит дополнительно <tex> O(n^c) </tex>  действий, а если размер подзадачи становится равен единицы, то алгоритму требуется <tex>O(1)</tex> действий на её решение. Мастер-теорема работает также при замене <tex> O </tex> на <tex> \Theta </tex> и <tex> \Omega </tex> соответствующим образом (<tex> O \rightarrow \Theta, O \rightarrow \Omega </tex>).  
+
Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать следующим образом: имеется задача размера <tex> n </tex>, алгоритм разбивает её на <tex> a </tex> подзадач размера <tex> \dfrac{n}{b} </tex> , тратит дополнительно <tex> O(n^c) </tex>  действий, а если размер подзадачи становится равен единице, то алгоритму требуется <tex>O(1)</tex> действий на её решение.  
 +
 
 +
Из доказательства теоремы видно, что если в рекурретном соотношении заменить <tex> O </tex> на <tex> \Theta </tex> и <tex> \Omega </tex>, то и асимптотика решения изменится соответствующим образом на <tex> \Theta </tex> или <tex> \Omega </tex>.
 +
 
 
==Примеры==   
 
==Примеры==   
  

Версия 23:43, 12 мая 2015

Мастер теорема (англ. Master theorem) позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов. Однако не все рекуррентные соотношения могут быть решены через мастер теорему, ее обобщения включаются в метод Акра-Бацци[1].

Формулировка и доказательство мастер-теоремы

Теорема (мастер-теорема):
Пусть имеется рекуррентное соотношения:

[math] T(n) = \begin{cases} a \; T\!\left(\dfrac{n}{b}\right) + O(n^{c}) , & n \gt 1\\ O(1) , & n = 1 \end{cases} , [/math]

где [math]a[/math] [math]\in \mathbb N [/math], [math]b[/math] [math] \in \mathbb R [/math], [math] b \gt 1[/math], [math]c[/math] [math]\mathbb \in R^{+} [/math].

Тогда асимптотическое решение имеет вид:

  1. Если [math]c \gt \log_b a[/math], то [math]T(n) = O\left( n^{c} \right)[/math]
  2. Если [math]c = \log_b a[/math], то [math]T(n) = O\left( n^{c} \log n \right)[/math]
  3. Если [math]c \lt \log_b a[/math], то [math]T(n) = O\left( n^{\log_b a} \right)[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим дерево рекурсии данного соотношения. Всего в нем будет [math]\log_b n[/math] уровней. На каждом таком уровне, количество детей в дереве будет умножаться на [math]a[/math], так на уровне [math]i[/math] будет [math]a^i[/math] детей. Также известно, что каждый ребенок на уровне [math]i[/math] размера [math]\dfrac{n}{b^i}[/math]. Ребенок размера [math]\left(\dfrac{n}{b^i}\right)[/math] требует [math]O\left(\left(\dfrac{n}{b^i}\right) ^ c\right)[/math] дополнительных затрат, поэтому общее количество совершенных действий на уровне [math]i[/math] : [math] a^i\left(\dfrac{n}{b^i}\right)^c = n^c\left(\dfrac{a^i}{b^{ic}}\right) = n^c\left(\dfrac{a}{b^c}\right)^i[/math] Заметим, что количество операций увеличивается, уменьшается и остается константой, если [math]\left(\dfrac{a}{b^c}\right)^i[/math] увеличивается, уменьшается или остается константой соответственно.

Поэтому решение разбивается на три случая, когда [math]\left(\dfrac{a}{b^c}\right)^i[/math] больше [math]1[/math], равна [math]1[/math] или меньше [math]1[/math]. Рассмотрим [math]\left(\dfrac{a}{b^c}\right)^i = 1\Leftrightarrow a = b^c \Leftrightarrow\ \log_b a = c \log_b b \Leftrightarrow\ \log_b a = c[/math].

Распишем всю работу в течение рекурсивного спуска: [math]T(n) = \displaystyle\sum_{i=0}^{\log_b n}O\left(n^c\cdot\left(\frac{a}{b^c}\right)^i\right) + O(1)= О\left(n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i + O(1)\right)[/math]

Откуда получаем:

  1. [math]c \gt \log_b a [/math] [math]\Rightarrow[/math] [math]T(n) = O\left( n^{c} \right)[/math] (так как [math] \left(\dfrac{a}{b^c}\right)^i[/math] убывающая геометрическая прогрессия)
  2. [math]c = \log_b a [/math] [math]\Rightarrow[/math] [math] T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = [/math] [math] n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}1^i = n^c + n^c\log_b n = O\left( n^{c} \log n \right) [/math]
  3. [math]c \lt \log_b a [/math] [math]\Rightarrow[/math] [math] T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\dfrac{a}{b^c}\right)^i = O\left(n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n}\right)[/math], но [math] n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n} [/math] [math] = [/math] [math] n^c\cdot\left(\dfrac{a^{\log_b n} }{(b^c)^{\log_b n}}\right) [/math] [math] = [/math] [math] n^c\cdot\left(\dfrac{n^{\log_b a}}{n^c}\right)[/math] [math] = [/math] [math] n^{\log_b a} \Rightarrow T(n) = O\left(n^{\log_b a}\right)[/math]
[math]\triangleleft[/math]

Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать следующим образом: имеется задача размера [math] n [/math], алгоритм разбивает её на [math] a [/math] подзадач размера [math] \dfrac{n}{b} [/math] , тратит дополнительно [math] O(n^c) [/math] действий, а если размер подзадачи становится равен единице, то алгоритму требуется [math]O(1)[/math] действий на её решение.

Из доказательства теоремы видно, что если в рекурретном соотношении заменить [math] O [/math] на [math] \Theta [/math] и [math] \Omega [/math], то и асимптотика решения изменится соответствующим образом на [math] \Theta [/math] или [math] \Omega [/math].

Примеры

Примеры задач

Пример 1

Пусть задано такое рекуррентное соотношение:


[math] t(x) = \begin{cases} 2 \; t\!\left(\dfrac{x}{2}\right) + O(n\log n) , & n \gt 1\\ 1 , & n = 1 \end{cases} [/math]

Заметим, что [math] n\log n = O(n^c) [/math], для любого [math] c \gt 1 [/math], что удовлетворяет 1 условию. Тогда [math] T(n) = O(n^c) [/math], где [math] c \gt 1 [/math], при [math] a = 2, b = 2, \log_b a = 1[/math]

Пример 2

Задано такое соотношение:

[math]f(n) =[/math] [math]n\sqrt{n + 1}[/math]

[math] T(n) = \begin{cases} 2 \; T\!\left(\dfrac{n}{3}\right) + O(f(n)) , & n \gt 1\\ d , & n = 1 \end{cases} [/math]

[math]f(n) = n\sqrt {n + 1} \lt n\sqrt{n + n} \lt n\sqrt{2n} = O(n^{3/2}) [/math]

Данное соотношение подходит под первый случай [math]\left(a = 2, b = 3, c = \dfrac{3}{2}\right)[/math], поэтому его асимптотика совпадает с асимптотикой [math]O(f(n))[/math].

Недопустимые соотношения

Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой:

  • [math]T(n) = 2^nT\left (\dfrac{n}{2}\right )+O(n^n)[/math]
    [math]a[/math] не является константой; количество подзадач может меняться
  • [math]T(n) = 2T\left (\dfrac{n}{2}\right )+O\left(\frac{n}{\log n}\right)[/math]
    рассмотрим [math] f(n) = \dfrac{n}{\log n} [/math] , тогда не существует такого [math] O(n^c) [/math], что [math] f(n) \in O(n^c) [/math] , т.к. при [math] n = 1 , f(n) \rightarrow \!\, \infty [/math], а [math] O(n^c) [/math] ограничено.
  • [math]T(n) = 0.5T\left (\dfrac{n}{2}\right )+O(n)[/math]
    [math]a \lt 1[/math] не может быть меньше одной подзадачи. Однако пример можно решить следующим образом: пусть [math] O(n) = c \cdot n [/math], тогда [math] T(n) = O(n) [/math]. Докажем по индукции, что [math] T(n) \le cn \cdot k [/math] , где [math] k - max(2, d), d - [/math] стоимость задачи, при [math] n = 1 [/math].

База: [math] n = 1 [/math] - верно ([math] T(1) \le k [/math]).

Переход: [math] T(n) = 0.5T\left(\dfrac{n}{2}\right) + cn \le \dfrac{ckn}{4} + cn \le \dfrac{ckn}{4} + 3 \cdot \dfrac{ckn}{4} \le ckn [/math]

Откуда видно, что [math] T(n) = O(n) [/math].

Приложение к известным алгоритмам

Алгоритм Рекуррентное соотношение Время работы Комментарий
Целочисленный двоичный поиск [math]T(n) = T\left(\dfrac{n}{2}\right) + O(1)[/math] [math]O(\log n)[/math] По мастер-теореме [math]c = \log_b a[/math], где [math]a = 1, b = 2, c = 0[/math]
Обход бинарного дерева [math]T(n) = 2 T\left(\dfrac{n}{2}\right) + O(1)[/math] [math]O(n)[/math] По мастер-теореме [math]c \lt \log_b a[/math], где [math]a = 2, b = 2, c = 0[/math]
Сортировка слиянием [math]T(n) = 2 T\left(\dfrac{n}{2}\right) + O(n)[/math] [math]O(n \log n)[/math] По мастер-теореме [math]c = \log_b a[/math], где [math]a = 2, b = 2, c = 1[/math]

См.также

Примечания

Источники информации