Упорядоченное множество — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Упорядоченное множество''' <tex>Set</tex> представляет собой коллекцию элементов <tex>elem</tex>, каждому из которых присваивается определенный ключ <tex>key</tex>, отвечающий за порядок этого элемента в множестве. Бинарное отношение <tex>R</tex> на упорядоченном множестве <tex>Set</tex> обладает следующими свойствами:
+
'''Упорядоченное множество''' <tex>Set</tex> представляет собой коллекцию элементов <tex>elem</tex>, каждому из которых присваивается определенный ключ <tex>key</tex>, отвечающий за порядок этого элемента в множестве. Бинарное отношение <tex>R</tex> на упорядоченном множестве <tex>Set</tex> является [[отношение порядка|отношением порядка]].
* [[Антисимметричное отношение|Антисимметричность]]: <tex>\mathcal {8} x,y \in A \  (xRy \land yRx \Rightarrow x = y)</tex>;
 
* [[Транзитивное отношение|Транзитивность]]: <tex>\mathcal {8} x,y,z \in A \  (xRy \land yRz \Rightarrow xRz)</tex>.
 
 
}}
 
}}
Пустое множество <tex>  \varnothing </tex> считается упорядоченным.
+
''Вполне упорядоченным множеством'', которое явяется важнейшим частным случаем, называется упорядоченное множество, каждое непустое подмножество которого содержит минимальный элемент.
 
 
  
 
==Операции над упорядоченным множеством==
 
==Операции над упорядоченным множеством==
Строка 31: Строка 28:
 
Функция <tex>\mathrm {successor(Set, elem)}</tex> возвращает указатель на элемент, стоящий после элемента <tex>elem</tex> множества <tex>Set</tex>.
 
Функция <tex>\mathrm {successor(Set, elem)}</tex> возвращает указатель на элемент, стоящий после элемента <tex>elem</tex> множества <tex>Set</tex>.
  
==Пример упорядоченного множества:==  
+
==Примеры==  
Примерами упорядоченных множеств могут служить такие структуры как деревья.
+
* Графы;
 +
* Пустое множество <tex>  \varnothing </tex>;
 +
* Множество натуральных чисел <tex>  \mathbb N </tex>.
  
 
== Литература ==
 
== Литература ==
1. Кормен, Т., Лейзерсон, Ч., Ривест, Р., Алгоритмы: построение и анализ = Introduction to Algorithms / — 1-е изд. — Пер. с англ под ред. А. Шеня. — М.: МЦНМО, 2002.—960 с. — ISBN 5-900916-37-5
+
# Кормен, Т., Лейзерсон, Ч., Ривест, Р., Алгоритмы: построение и анализ = Introduction to Algorithms / — 1-е изд. — Пер. с англ под ред. А. Шеня. — М.: МЦНМО, 2002.—960 с. — ISBN 5-900916-37-5
 +
# Александров П. С. Введение в теорию множеств и общую топологию. — М.: Наука, 1977. — 368 с.
 +
# Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 с.

Версия 19:48, 29 мая 2015

Определение:
Упорядоченное множество [math]Set[/math] представляет собой коллекцию элементов [math]elem[/math], каждому из которых присваивается определенный ключ [math]key[/math], отвечающий за порядок этого элемента в множестве. Бинарное отношение [math]R[/math] на упорядоченном множестве [math]Set[/math] является отношением порядка.

Вполне упорядоченным множеством, которое явяется важнейшим частным случаем, называется упорядоченное множество, каждое непустое подмножество которого содержит минимальный элемент.

Операции над упорядоченным множеством

Над упорядоченным множеством [math]Set[/math] заданы следующие операции:

Insert

Функция [math]\mathrm {insert(Set, elem, elemKey)}[/math] добавляет заданный элемент [math]elem[/math], имеющий ключ [math]elemKey[/math], в подходящее место множества [math]Set[/math] (сохраняя свойство упорядоченности).

Delete

Функция [math]\mathrm {delete(Set, key)}[/math] удаляет элемент, имеющий ключ [math]key[/math] (сохраняя свойство упорядоченности).

Search

Функция [math]\mathrm {search(Set, key)}[/math], которая получает на вход искомый ключ [math]key[/math], и возвращает указатель на элемент множества [math]Set[/math] или специальное значение [math]null[/math], если такого элемента нет.

Minimum

Функция [math]\mathrm {minimum(Set)}[/math] возвращает указатель на минимальный элемент множества [math]Set[/math].

Maximum

Функция [math]\mathrm {maximum(Set)}[/math] возвращает указатель на максимальный элемент множества [math]Set[/math].

Predecessor

Функция [math]\mathrm {predecessor(Set, elem)}[/math] возвращает указатель на элемент, стоящий перед элементом [math]elem[/math] множества [math]Set[/math].

Successor

Функция [math]\mathrm {successor(Set, elem)}[/math] возвращает указатель на элемент, стоящий после элемента [math]elem[/math] множества [math]Set[/math].

Примеры

  • Графы;
  • Пустое множество [math] \varnothing [/math];
  • Множество натуральных чисел [math] \mathbb N [/math].

Литература

  1. Кормен, Т., Лейзерсон, Ч., Ривест, Р., Алгоритмы: построение и анализ = Introduction to Algorithms / — 1-е изд. — Пер. с англ под ред. А. Шеня. — М.: МЦНМО, 2002.—960 с. — ISBN 5-900916-37-5
  2. Александров П. С. Введение в теорию множеств и общую топологию. — М.: Наука, 1977. — 368 с.
  3. Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 с.