Fusion tree — различия между версиями
Zernov (обсуждение | вклад) (→Вычисление sketch(x)) |
Zernov (обсуждение | вклад) м (→Сравнение значений sketch двух чисел) |
||
Строка 45: | Строка 45: | ||
===Сравнение значений sketch двух чисел=== | ===Сравнение значений sketch двух чисел=== | ||
− | В предыдущем абзаце мы научились считать <tex>succ(sketch(q))</tex> и <tex>pred(sketch(q))</tex>, теперь | + | В предыдущем абзаце мы научились считать <tex>succ(sketch(q))</tex> и <tex>pred(sketch(q))</tex>, теперь посчитаем их. Определим <tex>sketch(node)</tex> как число, составленное из единиц и <tex>sketch(a_i)</tex>, то есть <tex>sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1sketch(a_k)</tex>. Вычтем из <tex>sketch(node)</tex> число <tex>sketch(q) \times \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1) bits} = 0sketch(q)\ldots 0sketch(q)</tex>. В начале каждого блока, где <tex>sketch(a_i) \geqslant sketch(q)</tex>, сохранятся единицы. Применим к получившемуся побитовое <tex>\&</tex> c <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}</tex>, чтобы убрать лишние биты. |
<tex>L = (1sketch(a_1)\ldots 1sketch(a_k) - 0sketch(q)\ldots 0sketch(q)) \& \displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex> | <tex>L = (1sketch(a_1)\ldots 1sketch(a_k) - 0sketch(q)\ldots 0sketch(q)) \& \displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex> |
Версия 19:21, 6 июня 2015
Fusion tree — дерево поиска, позволяющее хранить
-битных чисел, используя памяти, и выполнять операции поиска за время . Эта структура данных была впервые предложена в 1990 году М. Фредманом (M. Fredman) и Д. Уиллардом (D. Willard).Содержание
Структура
Fusion tree — это B-дерево, такое что:
- у всех вершин, кроме листьев, детей,
- время, за которое определяется, в каком поддереве находится вершина, равно .
Такое время работы достигается за счет хранения дополнительной информации в вершинах. Построим цифровой бор из ключей узла дерева. Всего ветвящихся вершин. Биты, соответствующие уровням дерева, в которых происходит ветвление, назовем существенными и обозначим их номера (индексация идет от листьев, которые соответствуют концу числа, т.е. младшему разряду). Количество существенных битов не больше (все ребра на уровне детей ветвящейся вершины — обведены на рисунке — являются существенными битами, и так как ветвящихся вершин , значит, и количество уровней с детьми не больше , поскольку на одном уровне могут быть несколько ветвящихся вершин).
В Fusion tree вместе с ключом
хранится — последовательность битов .Утверждение: |
сохраняет порядок, то есть , если . |
Рассмотрим наибольший общий префикс | и . Тогда следующий бит определяет их порядок и одновременно является существенным битом. Поэтому, если , то и .
Поиск вершины
Пусть
— множество ключей узла, отсортированных по возрастанию, — ключ искомой вершины, — количество бит в . Сначала найдем такой ключ , что . Хотя положение среди не всегда эквивалентно положению среди , зная соседние элементы , мы можем найти и .Поиск следующего и предыдущего
Утверждение: |
Пусть . Тогда среди всех ключей наибольший общий префикс с будет иметь или или . |
Предположим, что Рассмотрим имеет наибольший общий префикс с . Тогда будет иметь больше общих битов со . Значит, ближе по значению к , чем или , что приводит к противоречию. . У него есть существенные биты и некоторый элемент , с которым у наибольший общий префикс (настоящий, а не по ). Биты из , находящиеся в префиксе совпадают, значит и среди должны быть такими же среди , и один из них имеет дальше бит (а другой ) и с ним может быть больше других общих бит в . То есть либо , либо имеют следующий существенный бит такой же, как и у . Поэтому если значение равно , то наибольший среди значений с меньшим , и, аналогично для , наименьший среди больших. |
Сравнивая
и , найдем какой из ключей и имеет наибольший общий префикс с (наименьшее значение соответствует наибольшей длине, так как одинаковые старшие биты обнулятся, следовательно, если , то у первый несовпадающий бит старше, чем у ).Предположим, что
— наибольший общий префикс, а его длина, — ключ, имеющий наибольший общий префикс с ( или ).- если , то бит равен единице, а бит равен нулю. Так как общий префикс и является наибольшим, то не существует ключа с префиксом . Значит, больше всех ключей с префиксом меньшим либо равным . Найдем , , который одновременно будет ,
- если — найдем , . Это будет .
Длина наибольшего общего префикса двух
-битных чисел и может быть вычислена с помощью нахождения индекса наиболее значащего бита в побитовом и .Сравнение значений sketch двух чисел
В предыдущем абзаце мы научились считать
и , теперь посчитаем их. Определим как число, составленное из единиц и , то есть . Вычтем из число . В начале каждого блока, где , сохранятся единицы. Применим к получившемуся побитовое c , чтобы убрать лишние биты.
Если
, то , в противном случае . Теперь надо найти количество единиц в . Умножим на , тогда все единицы сложатся в первом блоке результата, и, чтобы получить количество единиц, сдвинем его вправо на бит.Вычисление sketch(x)
Чтобы найти
за константное время, будем вычислять , имеющий все существенные биты в нужном порядке, но содержащий лишние нули. Хотя содержит лишние нули, мы сможем вычислять его быстрее, чем обычный , потому что нам не придется каждый раз идти по всем битам числа, выбирая стоящие на нужных нам местах. Будем использовать вместо — это никак не повлияет на сравнение, поскольку добавленные биты равны нулю и стоят на одних и тех же местах для всех- Уберем все несущественные биты .
- Умножением на некоторое заранее вычисленное число сместим все существенные биты в блок меньшего размера: .
- Применив побитовое , уберем лишние биты, появившиеся в результате умножения: .
- Сделаем сдвиг вправо на бит.
Утверждение: |
Дана последовательность из чисел . Тогда существует последовательность , такая что:
|
Выберем некоторые Чтобы получить , таким образом, чтобы . Предположим, что мы выбрали . Тогда . Всего недопустимых значений для , поэтому всегда можно найти хотя бы одно значение. , выбираем каждый раз наименьшее и прибавляем подходящее число кратное , такое что . |
Первые два условия необходимы для того, чтобы сохранить все существенные биты в нужном порядке. Третье условие позволит поместить
узла в -битный тип. Так как , то будет занимать бит, при всехИндекс наиболее значащего бита
Чтобы найти в
-битном числе индекс самого старшего бита, содержащего единицу (это понадобится в дальнейшем, для нахождения ), разделим на блоков по бит. . Далее найдем первый непустой блок и индекс первого единичного бита в нем.- Поиск непустых блоков.
- Определим, какие блоки имеют единицу в первом бите. Применим побитовое к и константе :
- Определим, содержат ли остальные биты единицы.
- Вычислим :
- Вычтем из . Если какой-нибудь бит обнулится, значит, соответствующий блок содержит единицы:
- Чтобы найти блоки, содержащие единицы, вычислим :
- Первый бит в каждом блоке содержит единицу, если соответствующий блок ненулевой:
- Найдем , чтобы сместить все нужные биты в один блок. Существенными битами в данном случае будут первые биты каждого блока, поэтому . Будем использовать . Тогда . Все суммы различны при . Все возрастают, и . Чтобы найти , умножим на и сдвинем вправо на бит.
- Найдем первый ненулевой блок. Для этого надо найти первую единицу в . Как и при поиске и используем параллельное сравнение с . В результате сравнения получим номер первого ненулевого блока .
- Найдем номер первого единичного бита в найденном блоке так же как и в предыдущем пункте.
- Индекс наиболее значащего бита будет равен .
Каждый шаг выполняется за
, поэтому всего потребуется времени, чтобы найти индекс.Циклы де Брёйна
Последовательность де Брёйна — последовательность
, элементы которой принадлежат заданному конечному множеству (обычно рассматривают множество ), и все подпоследовательности заданной длины различны.Часто рассматриваются периодические последовательности с периодом
, содержащие различных подпоследовательностей , — то есть такие периодические последовательности, в которых любой отрезок длины является последовательностью де Брёйна с теми же параметрами и .Свойства
Очевидно, что длина (период) такого цикла не может превосходить
— числа́ всех различных векторов длины с элементами из ; несложно доказать, что эта оценка достигается. Циклы этой максимально возможной длины обычно называют циклами де Брёйна (впрочем, иногда этот термин применяют и к циклам меньшей длины).При
существуют такие циклы де Брёйна с длиной, на единицу меньшей максимума, которые выражаются линейными рекуррентными соотношениями порядка : так, при соотношение порождает последовательности с периодом 7, например 0010111001011100… (цикл де Брёйна 0010111). На основе таких последовательностей построен, в частности, циклический избыточный код.Примеры
Примеры циклов де Брёйна для
с периодом 2, 4, 8, 16:- 01 (содержит подпоследовательности 0 и 1)
- 0011 (содержит подпоследовательности 00, 01, 11, 10)
- 00010111 (000, 001, 010, 101, 011, 111, 110, 100)
- 0000100110101111
Граф де Брёйна
Существует удобная интерпретация последовательностей и циклов де Брёйна, основанная на так называемом графе де Брёйна — ориентированном графе с
вершинами, соответствующими различных наборов длины с элементами из , в котором из вершины в вершину ребро ведёт в том и только том случае, когда ( ); при этом самому ребру можно сопоставить набор длины : . Для такого графа не проходящие дважды через одно и то же ребро эйлеровы пути (эйлеровы циклы) соответствуют последовательности (циклу) де Брёйна с параметрами и , а не проходящие дважды через одну и ту же вершину гамильтоновы пути (гамильтоновы циклы) — последовательности (циклу) де Брёйна с параметрами и .Граф де Брёйна широко применяется в биоинформатике в задачах сборки генома.