Суффиксный бор — различия между версиями
Iloskutov (обсуждение | вклад) (→Свойства: добавлен пример, на котором достигается оценка количества вершин) |
Iloskutov (обсуждение | вклад) (Стилистические правки) |
||
Строка 1: | Строка 1: | ||
− | |||
'''Суффиксный бор''' (англ. ''suffix trie'') {{---}} [[бор]], содержащий все суффиксы данной строки. | '''Суффиксный бор''' (англ. ''suffix trie'') {{---}} [[бор]], содержащий все суффиксы данной строки. | ||
По определению, в суффиксном боре для строки <tex>s</tex> (где <tex>|s| = n</tex>) содержатся все строки <tex>s[1 \mathinner{\ldotp\ldotp} n], \dotsc, s[n \mathinner{\ldotp\ldotp} n]</tex>. Заметим, что если в суффиксном боре находится строка <tex>s[i \mathinner{\ldotp\ldotp} n]</tex>, то все её префиксы <tex>s[i \mathinner{\ldotp\ldotp} j]</tex> (<tex>i \leqslant j \leqslant n</tex>) уже содержатся в боре. | По определению, в суффиксном боре для строки <tex>s</tex> (где <tex>|s| = n</tex>) содержатся все строки <tex>s[1 \mathinner{\ldotp\ldotp} n], \dotsc, s[n \mathinner{\ldotp\ldotp} n]</tex>. Заметим, что если в суффиксном боре находится строка <tex>s[i \mathinner{\ldotp\ldotp} n]</tex>, то все её префиксы <tex>s[i \mathinner{\ldotp\ldotp} j]</tex> (<tex>i \leqslant j \leqslant n</tex>) уже содержатся в боре. | ||
==Применение== | ==Применение== | ||
+ | [[Файл:Syffix_trie_1.png|500px|thumb|center|Суффиксный бор для строки <tex>abbc</tex>]] | ||
Суффиксный бор можно использовать для поиска подстроки в строке <tex>s</tex> тем же образом, что и для [[Бор#Поиск строки в бору|поиска строки в боре]]. Чтобы бор формально содержал все подстроки <tex>s</tex>, нужно пометить все его вершины терминальными, при этом корень будет соответствовать пустой строке <tex>\varepsilon</tex>. | Суффиксный бор можно использовать для поиска подстроки в строке <tex>s</tex> тем же образом, что и для [[Бор#Поиск строки в бору|поиска строки в боре]]. Чтобы бор формально содержал все подстроки <tex>s</tex>, нужно пометить все его вершины терминальными, при этом корень будет соответствовать пустой строке <tex>\varepsilon</tex>. | ||
Строка 19: | Строка 19: | ||
'''map<char, Node>''' children | '''map<char, Node>''' children | ||
− | ''' | + | '''function''' add(s : '''string''') |
'''Node''' current = root | '''Node''' current = root | ||
'''for''' c '''in''' s | '''for''' c '''in''' s | ||
'''if''' current.children[c] == <tex>\varnothing</tex> | '''if''' current.children[c] == <tex>\varnothing</tex> | ||
− | current.children[c] = | + | current.children[c] = Node() |
current = current.children[c] | current = current.children[c] | ||
− | ''' | + | '''function''' build(s : '''string''') |
− | root = | + | root = Node() |
'''int''' n = s.size | '''int''' n = s.size | ||
'''for''' i = 1 '''to''' n | '''for''' i = 1 '''to''' n | ||
Строка 39: | Строка 39: | ||
* [[Сжатое суффиксное дерево]] | * [[Сжатое суффиксное дерево]] | ||
− | == | + | == Источники информации == |
*''Дэн Гасфилд'' — '''Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология''' — СПб.: Невский Диалект; БХВ-Петербург, 2003. — 654 с: ил. | *''Дэн Гасфилд'' — '''Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология''' — СПб.: Невский Диалект; БХВ-Петербург, 2003. — 654 с: ил. | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Словарные структуры данных]] | [[Категория:Словарные структуры данных]] |
Версия 01:51, 9 июня 2015
Суффиксный бор (англ. suffix trie) — бор, содержащий все суффиксы данной строки.
По определению, в суффиксном боре для строки
(где ) содержатся все строки . Заметим, что если в суффиксном боре находится строка , то все её префиксы ( ) уже содержатся в боре.Содержание
Применение
Суффиксный бор можно использовать для поиска подстроки в строке поиска строки в боре. Чтобы бор формально содержал все подстроки , нужно пометить все его вершины терминальными, при этом корень будет соответствовать пустой строке .
тем же образом, что и дляСвойства
Суффиксный бор для строки
:- Можно использовать для поиска образца в строке за время .
- Можно построить за время , последовательно добавив все суффиксы .
- Имеет порядка вершин в худшем случае. Например, для строки, каждый символ в которой уникален, суффиксный бор будет содержать вершин.
Реализация
struct Trie Node root
struct Node map<char, Node> children
function add(s : string)
Node current = root
for c in s
if current.children[c] ==
current.children[c] = Node()
current = current.children[c]
function build(s : string) root = Node() int n = s.size for i = 1 to n add(s[i..n])
Оценки использования памяти
Пусть мы построили суффиксный бор для строки сжатое суффиксное дерево.
( ). Из третьего свойства следует, что если хранить переходы суффиксного бора из каждой вершины как массив размера (по каждому символу — переход), то потребуется памяти. Однако, заметим, что число ветвлений в не превышает числа листьев, что, в свою очередь, не превышает количества суффиксов. Количество суффиксов — , а значит число вершин, из которых ведет больше одного перехода, . Поэтому, если в неветвящихся вершинах хранить только символ перехода и ребенка, то можно получить оценку . Улучшением суффиксного бора, расходующим всего памяти, являетсяСм. также
Источники информации
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — 654 с: ил.