Математическая индукция — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Новая страница: «{{В разработке}} {{Определение | definition = }} Математическая индукция - способ рассужжения, зак…»)
 
м
Строка 19: Строка 19:
 
# <tex> n = 1: 1 + x >= 1 + x </tex> - верно
 
# <tex> n = 1: 1 + x >= 1 + x </tex> - верно
 
# <tex> {(1 + x)}^{n + 1} = {(1 + x)}^n (1 + x) >= (1 + nx) (1 + x) = </tex><br /><tex> = 1 + x + nx + nx^2 >= 1 + (n + 1)x  - P_{n+1} </tex>
 
# <tex> {(1 + x)}^{n + 1} = {(1 + x)}^n (1 + x) >= (1 + nx) (1 + x) = </tex><br /><tex> = 1 + x + nx + nx^2 >= 1 + (n + 1)x  - P_{n+1} </tex>
 +
}}
  
 +
Для того, чтобы сформировать следующее утверждение, определим систему чисел, называемую биномиальными коэффициентами: <br />
 +
:<tex> 0! = 1 \\ n! = n(n-1)! = n (n-1) (n-2) \dots 1 </tex>
 +
:<tex> m <= n: C_n^m = \frac {n!} {(n-m)!m!} \\
 +
C_{n+1}^m = C_n^m + C_n^{m-1} = \\
 +
= C_n^m + C_n^{m-1} = \frac {n!} {(n-m)!m!} + \frac {n!} {(n-m+1)!(m-1)!} = \\
 +
= \frac {n!((n - m + 1) + m)} {m!((n+1) - m)!} = \frac {n!*(n+1)} {((n+1)-m)!m!} = C_{n+1}^m </tex>
 +
 +
{{Утверждение
 +
|about =
 +
конечный бином Ньютона
 +
|statement = 
 +
<tex> {(a + b)}^n = \sum_{k=0}^n C_n^k a^k b^{n - k} </tex>
 +
|proof = <br />
 +
# Для n = 1 - очевидно
 +
# <tex> {(a + b)}^{n + 1} = a{(a + b)}^n + b{(a + b)}^n = </tex><br />
 +
:<tex> = \sum_{k = 0}^n C_n^k a^{k + 1} b^{n - k} + \sum_{k = 0}^n C_n^k a^k b^{n - k + 1} = </tex><br />
 +
:<tex> = \sum_{j = 1}^{n + 1} C_n^{j - 1} a^j b^{n - j + 1} + \sum_{i = 0}^n C_n^i a^i b^{n - i + 1} = </tex><br />
 +
:<tex> = C_n^n a^{n + 1} b^0 + \sum_{j = 1}^n C_n^{j - 1} a^j b^{n - j + 1} + C_n^0 a^0 b^{n+1} + \sum_{i = 1}^n C_n^i a^i b^{n - i + 1} = :</tex> <br />
 +
:<tex> = 1 (a^{n + 1} + b^{n + 1}) + \sum_{j = 1}^n (C_n^{j - 1} + C_n^j) a^j b^{n - j + 1}</tex> <br />
 +
:Так как <tex>1 = C_{n + 1}^{n + 1} = C_{n + 1}^0 </tex> , то <br />
 +
:<tex> = C_{n + 1}^{n + 1} a^{n + 1} b^0 + C_{n + 1}^0 a^0 b^{n + 1} + \sum_{j = 1}^n C_{n + 1}^j a^j b^{n - j + 1}</tex> <br />
 +
:Занесем первые два слагаемых под знак суммы и получим: <br />
 +
:<tex> = \sum_{j = 0}^{n + 1} C_{n + 1}^j a^j b^{n + 1 - j}</tex> , что есть разложение для <tex> {(a + b)}^{n + 1} </tex>
 
}}
 
}}
  
 
[[Категория:Математический анализ 1 курс]]
 
[[Категория:Математический анализ 1 курс]]

Версия 01:57, 15 ноября 2010

Эта статья находится в разработке!


Определение:


Математическая индукция - способ рассужжения, заключающийся в следующем:

Пусть имеется последовательность свойств [math] P_1, P_2 \dots P_n [/math]

  1. [math] P_1 [/math] - истина
  2. [math] P_n \Rightarrow P_{n+1} [/math] - шаг индукции
  3. Тогда все [math] P_n [/math] - истинны
Утверждение (неравенство Бернулли):
[math] \forall n \in N; \forall x \gt -1 : {(1 + x)}^n \gt = 1 + nx [/math]
[math]\triangleright[/math]


  1. [math] n = 1: 1 + x \gt = 1 + x [/math] - верно
  2. [math] {(1 + x)}^{n + 1} = {(1 + x)}^n (1 + x) \gt = (1 + nx) (1 + x) = [/math]
    [math] = 1 + x + nx + nx^2 \gt = 1 + (n + 1)x - P_{n+1} [/math]
[math]\triangleleft[/math]

Для того, чтобы сформировать следующее утверждение, определим систему чисел, называемую биномиальными коэффициентами:

[math] 0! = 1 \\ n! = n(n-1)! = n (n-1) (n-2) \dots 1 [/math]
[math] m \lt = n: C_n^m = \frac {n!} {(n-m)!m!} \\ C_{n+1}^m = C_n^m + C_n^{m-1} = \\ = C_n^m + C_n^{m-1} = \frac {n!} {(n-m)!m!} + \frac {n!} {(n-m+1)!(m-1)!} = \\ = \frac {n!((n - m + 1) + m)} {m!((n+1) - m)!} = \frac {n!*(n+1)} {((n+1)-m)!m!} = C_{n+1}^m [/math]
Утверждение (конечный бином Ньютона):
[math] {(a + b)}^n = \sum_{k=0}^n C_n^k a^k b^{n - k} [/math]
[math]\triangleright[/math]


  1. Для n = 1 - очевидно
  2. [math] {(a + b)}^{n + 1} = a{(a + b)}^n + b{(a + b)}^n = [/math]
[math] = \sum_{k = 0}^n C_n^k a^{k + 1} b^{n - k} + \sum_{k = 0}^n C_n^k a^k b^{n - k + 1} = [/math]
[math] = \sum_{j = 1}^{n + 1} C_n^{j - 1} a^j b^{n - j + 1} + \sum_{i = 0}^n C_n^i a^i b^{n - i + 1} = [/math]
[math] = C_n^n a^{n + 1} b^0 + \sum_{j = 1}^n C_n^{j - 1} a^j b^{n - j + 1} + C_n^0 a^0 b^{n+1} + \sum_{i = 1}^n C_n^i a^i b^{n - i + 1} = :[/math]
[math] = 1 (a^{n + 1} + b^{n + 1}) + \sum_{j = 1}^n (C_n^{j - 1} + C_n^j) a^j b^{n - j + 1}[/math]
Так как [math]1 = C_{n + 1}^{n + 1} = C_{n + 1}^0 [/math] , то
[math] = C_{n + 1}^{n + 1} a^{n + 1} b^0 + C_{n + 1}^0 a^0 b^{n + 1} + \sum_{j = 1}^n C_{n + 1}^j a^j b^{n - j + 1}[/math]
Занесем первые два слагаемых под знак суммы и получим:
[math] = \sum_{j = 0}^{n + 1} C_{n + 1}^j a^j b^{n + 1 - j}[/math] , что есть разложение для [math] {(a + b)}^{n + 1} [/math]
[math]\triangleleft[/math]