Граф замен — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Источник)
Строка 13: Строка 13:
 
Пусть <tex>X_1 = \{z \in S \setminus I \mid I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in I_2 \}, P</tex> — кратчайший путь в <tex>D_{M_1, M_2}(I)</tex> из <tex>X_1</tex> в <tex>X_2</tex>. Тогда [[Алгоритм построения базы в пересечении матроидов|алгоритм]] с помощью этого пути либо определяет максимальность набора <tex>I</tex>, либо позволяет найти набор большей мощности.
 
Пусть <tex>X_1 = \{z \in S \setminus I \mid I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in I_2 \}, P</tex> — кратчайший путь в <tex>D_{M_1, M_2}(I)</tex> из <tex>X_1</tex> в <tex>X_2</tex>. Тогда [[Алгоритм построения базы в пересечении матроидов|алгоритм]] с помощью этого пути либо определяет максимальность набора <tex>I</tex>, либо позволяет найти набор большей мощности.
  
== Источник ==
+
== Источники информации ==
 
''Chandra Chekuri'' — [http://www.cs.illinois.edu/class/sp10/cs598csc/Lectures/Lecture17.pdf '''Combinatorial Optimization'''], с. 2-3.
 
''Chandra Chekuri'' — [http://www.cs.illinois.edu/class/sp10/cs598csc/Lectures/Lecture17.pdf '''Combinatorial Optimization'''], с. 2-3.
  
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Матроиды]]
 
[[Категория:Матроиды]]

Версия 11:15, 28 февраля 2016

Граф замен [math]D_{M_1, M_2}(I)[/math]

Граф замен — специальный ориентированный двудольный граф, фигурирующий в теореме Эдмондса-Лоулера.

Пусть [math]I[/math] — текущее независимое множество, построенное алгоритмом для матроидов [math]M_1 = \langle S, I_1 \rangle[/math], [math]M_2 = \langle S, I_2 \rangle[/math]. Введем граф замен [math]D_{M_1, M_2}(I)[/math], левой долей которого являются элементы множества [math]I[/math], правой — все остальные элементы [math]S[/math]. Проведем все имеющиеся ребра

[math](y, z): y \in I, z \in S \setminus I, I \setminus y \cup z \in I_1[/math],

а также

[math](z', y'): y' \in I, z' \in S \setminus I, I \setminus y' \cup z' \in I_2[/math].

Пусть [math]X_1 = \{z \in S \setminus I \mid I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in I_2 \}, P[/math] — кратчайший путь в [math]D_{M_1, M_2}(I)[/math] из [math]X_1[/math] в [math]X_2[/math]. Тогда алгоритм с помощью этого пути либо определяет максимальность набора [math]I[/math], либо позволяет найти набор большей мощности.

Источники информации

Chandra ChekuriCombinatorial Optimization, с. 2-3.