Обсуждение участника:Shovkoplyas Grigory — различия между версиями
Строка 1: | Строка 1: | ||
− | '''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения за <tex>\langle O(N),O(1) \rangle</tex> времени специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для [[Сведение задачи LCA к задаче RMQ|решения задачи LCA]]. | + | '''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения за <tex>\langle O(N),O(1) \rangle</tex> времени специального случая задачи <tex>RMQ</tex> (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для [[Сведение задачи LCA к задаче RMQ|решения задачи <tex>LCA</tex>]]. |
{{Задача | {{Задача | ||
− | |definition = Дан массив <tex>A[1 \ldots N]</tex> целых чисел, соседние элементы которой отличаются на | + | |definition = Дан массив <tex>A[1 \ldots N]</tex> целых чисел, соседние элементы которой отличаются на <tex>\pm 1</tex>. Поступают онлайн запросы вида <tex>(l, r)</tex>, для каждого из которых требуется найти минимум среди элементов <tex>A[l], A[l + 1], \ldots, A[r] </tex>. |
}} | }} | ||
== Алгоритм == | == Алгоритм == | ||
− | Данный алгоритм основывается на методе решения задачи RMQ с помощью [[Решение RMQ с помощью разреженной таблицы|разреженной таблицы (sparse table, ST)]] за <tex>\langle O(N \log N),O(1) \rangle</tex>. | + | Данный алгоритм основывается на методе решения задачи <tex>RMQ</tex> с помощью [[Решение RMQ с помощью разреженной таблицы|разреженной таблицы (sparse table, ST)]] за <tex>\langle O(N \log N),O(1) \rangle</tex>. |
− | Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex> | + | Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>A_i</tex> на блоки длины <tex>\frac{\log_2 N}{2}</tex>. Для каждого блока вычислим минимум на нём и определим <tex>B_i</tex> как позицию минимального элемента в <tex>i</tex>-ом блоке. |
− | На новой последовательности <tex> | + | На новой последовательности <tex>B_i</tex> построим [[Решение RMQ с помощью разреженной таблицы|разреженную таблицу]]. Теперь для ответа на запрос <tex>RMQ</tex><tex>[i:j]</tex>, если <tex>i</tex> и <tex>j</tex> находятся в разных блоках, нам необходимо вычислить следующее: |
− | # минимум на отрезке от <tex>i</tex> до конца содержащего <tex>i</tex> | + | # минимум на отрезке от <tex>i</tex> до конца блока, содержащего <tex>i</tex>; |
# минимум по всем блокам, находящимся между блоками, содержащими <tex>i</tex> и <tex>j</tex>; | # минимум по всем блокам, находящимся между блоками, содержащими <tex>i</tex> и <tex>j</tex>; | ||
# минимум от начала блока, содержащего <tex>j</tex>, до <tex>j</tex>. | # минимум от начала блока, содержащего <tex>j</tex>, до <tex>j</tex>. | ||
Строка 19: | Строка 19: | ||
[[Файл:F-C_B_algo.png|500px|center|Части, из которых состоит ответ на запрос RMQ]] | [[Файл:F-C_B_algo.png|500px|center|Части, из которых состоит ответ на запрос RMQ]] | ||
− | Второй элемент мы уже умеем находить за <tex>O(1)</tex> с помощью <tex> | + | Второй элемент мы уже умеем находить за <tex>O(1)</tex> с помощью <tex>И_i</tex> и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков. |
=== Минимум внутри блока === | === Минимум внутри блока === | ||
Строка 25: | Строка 25: | ||
{{Утверждение | {{Утверждение | ||
|id=sameblocks | |id=sameblocks | ||
− | |statement=Если две последовательности <tex>x_i</tex> и <tex>y_i</tex> таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. <tex>\forall k: x_k = y_k + C</tex>), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей. | + | |statement=Если две последовательности <tex>x_i</tex> и <tex>y_i</tex> таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. <tex>\forall k: x_k = y_k + C</tex>), то любой запрос <tex>RMQ</tex> даст один и тот же ответ для обеих последовательностей. |
}} | }} | ||
Строка 33: | Строка 33: | ||
|id=kindscount | |id=kindscount | ||
|statement=Существует <tex>O(\sqrt N)</tex> различных типов нормализованных блоков. | |statement=Существует <tex>O(\sqrt N)</tex> различных типов нормализованных блоков. | ||
− | |proof=Соседние элементы в блоках отличаются на | + | |proof=Соседние элементы в блоках отличаются на <tex>\pm 1</tex>. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен <tex>\pm 1</tex>-вектором длины <tex>(\frac{\log_2 N}{2}) - 1</tex>. Таких векторов <tex>2^{(1/2 \cdot \log_2 N) - 1} = O(\sqrt N)</tex>. |
}} | }} | ||
− | Осталось создать <tex>O(\sqrt N)</tex> таблиц | + | Осталось создать <tex>O(\sqrt N)</tex> таблиц<tex>~---</tex> по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, которых <tex>(\frac{\log_2 N}{2})^2 = O(\log^2 N)</tex>. Для каждого блока в <tex>B_i</tex> необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за <tex>O(1)</tex>, затратив на предподсчёт <tex>O(\sqrt N \log^2 N)</tex> времени. |
=== Результат === | === Результат === | ||
Строка 46: | Строка 46: | ||
* [[Сведение задачи LCA к задаче RMQ]] | * [[Сведение задачи LCA к задаче RMQ]] | ||
− | == Источники == | + | ==Источники информации== |
− | * | + | * Bender, M.A., Farach-Colton, M. {{---}} The LCA Problem Revisited. LATIN (2000), с. 88-94 |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Задача о наименьшем общем предке]] | [[Категория: Задача о наименьшем общем предке]] |
Версия 15:10, 16 июня 2015
Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера) — применяется для решения за решения задачи .
времени специального случая задачи (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для
Задача: |
Дан массив | целых чисел, соседние элементы которой отличаются на . Поступают онлайн запросы вида , для каждого из которых требуется найти минимум среди элементов .
Алгоритм
Данный алгоритм основывается на методе решения задачи разреженной таблицы (sparse table, ST) за .
с помощьюЧтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность
на блоки длины . Для каждого блока вычислим минимум на нём и определим как позицию минимального элемента в -ом блоке.На новой последовательности разреженную таблицу. Теперь для ответа на запрос , если и находятся в разных блоках, нам необходимо вычислить следующее:
построим- минимум на отрезке от до конца блока, содержащего ;
- минимум по всем блокам, находящимся между блоками, содержащими и ;
- минимум от начала блока, содержащего , до .
Ответом на запрос будет позиция меньшего из эти трёх элементов.
Второй элемент мы уже умеем находить за
с помощью и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.Минимум внутри блока
Утверждение: |
Если две последовательности и таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. ), то любой запрос даст один и тот же ответ для обеих последовательностей. |
Таким образом, мы можем нормализовать блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.
Утверждение: |
Существует различных типов нормализованных блоков. |
Соседние элементы в блоках отличаются на | . Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен -вектором длины . Таких векторов .
Осталось создать
таблиц по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, которых . Для каждого блока в необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за , затратив на предподсчёт времени.Результат
Итого, на предподсчёт требуется
времени и памяти, а ответ на запрос вычисляется за .См. также
- Решение RMQ с помощью разреженной таблицы
- Сведение задачи RMQ к задаче LCA
- Сведение задачи LCA к задаче RMQ
Источники информации
- Bender, M.A., Farach-Colton, M. — The LCA Problem Revisited. LATIN (2000), с. 88-94