Алгоритм Форда-Беллмана — различия между версиями
(→Корректность) |
|||
Строка 1: | Строка 1: | ||
− | Для заданного взвешенного графа <tex>G = (V, E)</tex> | + | {{Задача |
− | В | + | |definition=Для заданного взвешенного графа <tex>G = (V, E)</tex> найти кратчайшие пути из заданной вершины <tex> s </tex> до всех остальных вершин. |
+ | В случае, когда в графе <tex>G</tex> содержатся отрицательные циклы, достижимые из <tex>s</tex>, сообщить, что кратчайших путей не существует. | ||
+ | }} | ||
==Введение== | ==Введение== | ||
Строка 7: | Строка 9: | ||
Теперь перепишем ее для пути кратчайшей длины. <tex>s</tex> {{---}} стартовая вершина. | Теперь перепишем ее для пути кратчайшей длины. <tex>s</tex> {{---}} стартовая вершина. | ||
<tex> d[k][u] = \min\limits_{v : vu \; \in E}(d[k-1][v] \: + \: \omega[uv])</tex>, при этом <tex>d[0][s] = 0</tex>, а <tex>d[0][u] = +\infty </tex> | <tex> d[k][u] = \min\limits_{v : vu \; \in E}(d[k-1][v] \: + \: \omega[uv])</tex>, при этом <tex>d[0][s] = 0</tex>, а <tex>d[0][u] = +\infty </tex> | ||
− | |||
{{Лемма | {{Лемма | ||
|statement=Если существует кратчайший путь от <tex>s</tex> до <tex>t</tex>, то <tex> \rho(s, \, t) \: = \: \min\limits_{k = 0..n-1} d[k][t]</tex> | |statement=Если существует кратчайший путь от <tex>s</tex> до <tex>t</tex>, то <tex> \rho(s, \, t) \: = \: \min\limits_{k = 0..n-1} d[k][t]</tex> | ||
Строка 28: | Строка 29: | ||
{{Лемма | {{Лемма | ||
|statement=Пусть <tex>G = (V, E)</tex> — взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. | |statement=Пусть <tex>G = (V, E)</tex> — взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. | ||
− | Тогда после завершения <tex>k</tex> итераций цикла <tex>for(k)</tex> выполняется неравенство <tex> \rho(s, u) \leqslant d'[u] \leqslant \min\limits_{i = 0..k} d[i][u]</tex>. | + | Тогда после завершения <tex>k</tex> итераций цикла <tex>\mathrm{for(k)}</tex> выполняется неравенство <tex> \rho(s, u) \leqslant d'[u] \leqslant \min\limits_{i = 0..k} d[i][u]</tex>. |
|proof=Воспользуемся индукцией по <tex>k</tex>: | |proof=Воспользуемся индукцией по <tex>k</tex>: | ||
Строка 71: | Строка 72: | ||
В этом алгоритме используется релаксация, в результате которой <tex>d[v]</tex> уменьшается до тех пор, пока не станет равным <tex>\delta(s, v)</tex>. | В этом алгоритме используется релаксация, в результате которой <tex>d[v]</tex> уменьшается до тех пор, пока не станет равным <tex>\delta(s, v)</tex>. | ||
− | <tex>d[v]</tex> - оценка веса кратчайшего пути из вершины <tex>s</tex> в каждую вершину <tex>v \in V</tex>.<br> | + | <tex>d[v]</tex> {{---}} оценка веса кратчайшего пути из вершины <tex>s</tex> в каждую вершину <tex>v \in V</tex>.<br> |
− | <tex>\delta(s, v)</tex> - фактический вес кратчайшего пути из <tex>s</tex> в вершину <tex>v</tex>. | + | <tex>\delta(s, v)</tex> {{---}} фактический вес кратчайшего пути из <tex>s</tex> в вершину <tex>v</tex>. |
{{Лемма | {{Лемма | ||
− | |statement=Пусть <tex>G = (V, E) </tex> | + | |statement=Пусть <tex>G = (V, E) </tex> {{---}} взвешенный ориентированный граф, <tex> s </tex> {{---}} стартовая вершина. Тогда после завершения <tex> |V| - 1 </tex> итераций цикла для всех вершин, достижимых из <tex>s</tex>, выполняется равенство <tex> d[v] = \delta (s, v) </tex>. |
|proof=Рассмотрим произвольную вершину <tex>v</tex>, достижимую из <tex>s</tex>. | |proof=Рассмотрим произвольную вершину <tex>v</tex>, достижимую из <tex>s</tex>. | ||
− | Пусть <tex>p = \langle v_0,..., v_{k} \rangle </tex>, где <tex>v_0 = s</tex>, <tex>v_{k} = v</tex> | + | Пусть <tex>p = \langle v_0,..., v_{k} \rangle </tex>, где <tex>v_0 = s</tex>, <tex>v_{k} = v</tex> {{---}} кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>. Путь <tex> p </tex> содержит не более <tex> |V| - 1 </tex> ребер. Поэтому <tex>k \le |V| - 1</tex>. |
Докажем следующее утверждение: | Докажем следующее утверждение: | ||
Строка 96: | Строка 97: | ||
{{Теорема | {{Теорема | ||
− | |statement=Пусть <tex>G = (V, E) </tex> - взвешенный ориентированный граф, <tex> s </tex> | + | |statement=Пусть <tex>G = (V, E) </tex> - взвешенный ориентированный граф, <tex> s </tex> {{---}} стартовая вершина. Если граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>, то алгоритм возвращает <tex> true </tex> и для всех <tex> v \in V \ d[v] = \delta (s, v)</tex>. Если граф <tex> G </tex> содержит отрицательные циклы, достижимые из вершины <tex> s </tex>, то алгоритм возвращает <tex> false </tex>. |
|proof=Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>. | |proof=Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>. | ||
Версия 22:39, 18 декабря 2015
Задача: |
Для заданного взвешенного графа | найти кратчайшие пути из заданной вершины до всех остальных вершин. В случае, когда в графе содержатся отрицательные циклы, достижимые из , сообщить, что кратчайших путей не существует.
Содержание
Введение
Сначала стоит вспомнить формулу для количества путей длины
. Теперь перепишем ее для пути кратчайшей длины. — стартовая вершина. , при этом , аЛемма: |
Если существует кратчайший путь от до , то |
Доказательство: |
Пусть кратчайший путь состоит из | ребер, тогда корректность формулы следует из динамики, приведенной ниже.
Псевдокод
Используя приведенные формулы, алгоритм можно реализовать методом динамического программирования.
forfor for
Также релаксацию можно свести к одномерному случаю (одномерный массив будем обозначать
):Корректность
Лемма: |
Пусть — взвешенный ориентированный граф, — стартовая вершина.
Тогда после завершения итераций цикла выполняется неравенство . |
Доказательство: |
Воспользуемся индукцией по :База индукции
Индукционный переход
|
Реализация алгоритма и ее корректность
Bellman_Ford(G, s) for для каждойfor to for для каждого ребра if then for для каждого ребра if then return return
В этом алгоритме используется релаксация, в результате которой уменьшается до тех пор, пока не станет равным .
— оценка веса кратчайшего пути из вершины в каждую вершину .
— фактический вес кратчайшего пути из в вершину .
Лемма: |
Пусть — взвешенный ориентированный граф, — стартовая вершина. Тогда после завершения итераций цикла для всех вершин, достижимых из , выполняется равенство . |
Доказательство: |
Рассмотрим произвольную вершину , достижимую из . Пусть , где , — кратчайший ациклический путь из в . Путь содержит не более ребер. Поэтому .Докажем следующее утверждение:
Воспользуемся индукцией по :База индукции
Индукционный переход
|
Теорема: |
Пусть - взвешенный ориентированный граф, — стартовая вершина. Если граф не содержит отрицательных циклов, достижимых из вершины , то алгоритм возвращает и для всех . Если граф содержит отрицательные циклы, достижимые из вершины , то алгоритм возвращает . |
Доказательство: |
Пусть граф не содержит отрицательных циклов, достижимых из вершины .Тогда если вершина достижима из , то по лемме . Если вершина не достижима из , то из несуществования пути.Теперь докажем, что алгоритм вернет значение .После выполнения алгоритма верно, что для всех , значит ни одна из проверок не вернет значения .Пусть граф содержит отрицательный цикл , где , достижимый из вершины . Тогда .Предположим, что алгоритм возвращает , тогда для выполняется .Просуммируем эти неравенства по всему циклу: .Из того, что Получили, что следует, что . , что противоречит отрицательности цикла . |
Сложность
Инициализация занимает
времени, каждый из проходов требует времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает времени. Значит алгоритм Беллмана-Форда работает за времени.Нахождение отрицательного цикла
Приведенная выше реализация позволяет определить наличие в графе цикла отрицательного веса. Чтобы найти сам цикл, достаточно хранить вершины, из которых производится релаксация.
Если после
итерации найдется вершина , расстояние до которой можно уменьшить, то эта вершина либо лежит на каком-нибудь цикле отрицательного веса, либо достижима из него. Чтобы найти вершину, которая лежит на цикле, можно раз пройти назад по предкам из вершины . Так как наибольшая длина пути в графе из вершин равна , то полученная вершина будет гарантированно лежать на отрицательном цикле.Зная, что вершина
лежит на цикле отрицательного веса, можно восстанавливать путь по сохраненным вершинам до тех пор, пока не встретится та же вершина . Это обязательно произойдет, так как в цикле отрицательного веса релаксации происходят по кругу.Neg_Cycle(G, s) for для каждойfor to for для каждого ребра if then for для каждого ребра if then for to while break return
Источники
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.672 — 676. — ISBN 978-5-8459-0857-5.
- Алгоритм Форда-Беллмана