LR(0)-разбор — различия между версиями
Margarita (обсуждение | вклад) (→Построение автомата и управляющей таблицы) |
Margarita (обсуждение | вклад) (→Автомат) |
||
Строка 21: | Строка 21: | ||
<tex>{[} A \to \alpha \cdot B \beta] \xrightarrow{\text{B}} {[} A \to \alpha B \cdot \beta] </tex> | <tex>{[} A \to \alpha \cdot B \beta] \xrightarrow{\text{B}} {[} A \to \alpha B \cdot \beta] </tex> | ||
− | Таким образом, мы определяем новые состояния, в которое автомат перейдет после переноса того или иного терминала или нетерминала. | + | Таким образом, мы определяем новые состояния, в которое автомат перейдет после переноса того или иного терминала или нетерминала. |
+ | |||
+ | Надо заметить, что алгоритм LR-разбора похож на [[Алгоритм Эрли|алгоритм Эрли]]. | ||
==== Базовые операции ==== | ==== Базовые операции ==== |
Версия 12:30, 3 сентября 2015
LR(0)-разборщик это частный случай LR(k)-разборщикa. Заметим, что в данном случае , то есть решение о своих действиях принимается только на основании содержимого стека, не учитывая символы входной цепочки.
Содержание
Построение автомата и управляющей таблицы
В статье про LR(k)-разборщик, управляющая программа одинакова для всех LR-анализаторов, а таблица и автомат изменяются от одного анализатора к другому.
Автомат
Каждое состояние автомата будет состоять из LR(0)-ситуации.
Определение: |
Пусть | — КС-грамматика и . Композицию назовем LR(0)-ситуацией (англ. LR(0)-item)
В начале работы стек пуст, и указатель входной цепочки находится перед ее первым символом. Этому состоянию соответствует ситуация
, где — нетерминал, добавленный при пополнении грамматики, — стартовый нетерминал. Назовем это состояние . Входная цепочка может начинаться с любого терминального символа, с которого начинается правая часть любого правила с левой частью . Построим соответствующий переход по следующей схеме:
Теперь мы должны выяснить, что произойдет, если анализатор выполнит перенос. Предположим, что мы выполним перенос
или перенос :
Таким образом, мы определяем новые состояния, в которое автомат перейдет после переноса того или иного терминала или нетерминала.
Надо заметить, что алгоритм LR-разбора похож на алгоритм Эрли.
Базовые операции
Заметим, что хранить в каждом состоянии только по одной ситуации не имеет смысла, поэтому пусть в каждое стостояние будет представлять множество ситуаций, а переходы — термилалы и нетермилалы. Для этого определим базовые операции
и , где — множество ситуаций, — символ грамматики (терминал или нетерминал).- Операция добавляет ситуации к множеству ситуаций, у которых точка стоит слева от нетерминала. Добавляются те ситуации, которые получаются из правил, в левой части которого находится этот нетерминал.
- Операция "переносит" точку после символа . Это означает переход из одного состояния в другое под воздействием символа .
Построение автомата
Теперь обсудим алгоритм построения конечного автомата. Обозначим
множество состояний, — множество переходов.- Изначальное состояние содержит одно правило: ,
- Для текущего состояния делаем операцию ,
- По всем возможный символам для каждой ситуации добавляем переходы, используя операцию ,
- Если множество или во втором или третьем пункте изменилось, возвращаемся ко второму шагу.
Управляющая таблица
После того, как автомат построен, можно построить управляющую таблицу.
Обращение к таблице происходит следующим образом
, где- — состояние автомата,
- — входной символ;
В соответствии со структурой управляющей таблицы будем действовать следующим образом:
- Для каждого ребра
- (сокр. от shift) , если — терминал,
- , если — нетерминал.
(из состояния в состояние по ) мы поместим в позицию
- Для состояния
- Поместим (сокр. от reduce), где — это номер правила в изначальной грамматике.
, содержащего ситуацию в позицию для каждого терминала
- Запись означает допуск.
- Пустая ячейка означает ошибочную ситуацию.
Пример
Для иллюстрации алгоритма LR(0)-разборщика мы будем использовать грамматику:
Обратим внимание, что данная грамматика является леворекурсивной, поэтому нисходящий разборщик не сможет осуществить разбор слова из этой грамматики.
Пополнение грамматики
Для начала переходим к Пополненной грамматике:
Построение автомата
НКА:
состоянию будет соответствует ситуация . Добавляем остальные состояния и получаем следующийТеперь в одно состояние перемещаем все ситуации, в которые идут ДКА:
-переходы. ПолучаемЗаполнение управляющей таблицы
Пронумеруем правила для выполнения свертки:
Управляющая таблица будет выглядеть так:
LR(0)-разбора конкретной строки
Пример будет для строки
Строка | Стек | Комментарий | |||
---|---|---|---|---|---|
Перенос | . Переход в состояние.|||||
Перенос | . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Перенос | . Переход в состояние.|||||
Перенос | . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Перенос | . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Перенос | . Переход в состояние.|||||
Перенос | . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Свертка: | . Удаление из стека . Переход в состояние. Добавление в стек . Переход в состояние.|||||
Так как свертка по нулевому правилу — осуществляем допуск. |
См. также
Источники информации
- Альфред Ахо, Рави Сети, Джеффри Ульман. Компиляторы. Принципы, технологии, инструменты. Издательство Вильямс, 2003. Стр. 301 - 326.
- Терехов Ан.А., Вояковская Н., Булычев Д., Москаль А. - Разработка компиляторов на платформе .NET - Восходящие анализаторы
- Б.К.Мартыненко. Языки и трансляции. Стр. 198 - 223
- Лекции по теории формальных языков, LR(0)-, SLR(1)-, LR(1)- и LALR(1)-анализ