Введение в комплексный анализ — различия между версиями
Строка 10: | Строка 10: | ||
}} | }} | ||
− | Если комплексное число <tex> z </tex> можно представить в виде <tex> a + bi </tex>, то мы можем отождествить записи <tex> (a, 0) \equiv a </tex>, <tex> (0, | + | Если комплексное число <tex> z </tex> можно представить в виде <tex> a + bi </tex>, то мы можем отождествить записи <tex> (a,0)\equiv a </tex>, <tex> (0,b)\equiv bi </tex>, <tex> i^2 = (0, 1) \cdot (0, 1) = (0 - 1, 0) = -1 </tex>. Именно отсюда получается. что <tex> i^2 = -1 </tex>. Соответственно пара <tex> \langle a, b \rangle </tex> это некий абстрактный объект, с которым нам и предстоит работать в этом курсе. |
Для выделения вещественной и комплексной частей будем пользоваться записями <tex> \Re(z) = a </tex> и <tex> \Im(z) = b </tex>. | Для выделения вещественной и комплексной частей будем пользоваться записями <tex> \Re(z) = a </tex> и <tex> \Im(z) = b </tex>. |
Версия 14:55, 9 сентября 2015
Эта статья находится в разработке!
На главную <<
Комплексный анализ отличается от математического анализа тем, что мы работаем теперь не только с вещественными числами, но и с комплексными.
Определение: |
Комплексное число это пара 1) 2) ; . | заданных на множестве, где определены операторы сложения и умножения:
Если комплексное число можно представить в виде , то мы можем отождествить записи , , . Именно отсюда получается. что . Соответственно пара это некий абстрактный объект, с которым нам и предстоит работать в этом курсе.
Для выделения вещественной и комплексной частей будем пользоваться записями
и .Комплексное число можно представить на плоскости, если отталкиваться от вещественной и мнимой частей, как от абсциссы и ординаты. Если задавать вектор не в прямоугольной системе координат, а в полярной, то приходится работать с углами.
Определение: |
. |
Определение: |
| , где - целое число.
Отсюда получаем формулы: