Типы дифференциальных уравнений — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Уравнения приводящиеся к однородным)
(Уравнения приводящиеся к однородным)
Строка 16: Строка 16:
 
<tex dpi = 200> todo </tex>
 
<tex dpi = 200> todo </tex>
 
{{Определение|definition= уравнение вида <tex dpi = 150>\frac{dy}{dx}= f(\frac{a_{1}x + b_{1}y + c_{1}}{a_{2}x + b_{2}y + c_{2}}) (4)</tex> называется уравнением приводящимся к однородному}}
 
{{Определение|definition= уравнение вида <tex dpi = 150>\frac{dy}{dx}= f(\frac{a_{1}x + b_{1}y + c_{1}}{a_{2}x + b_{2}y + c_{2}}) (4)</tex> называется уравнением приводящимся к однородному}}
{{Теорема| statement = Решением уравнения <tex>(4)<\tex> является
+
{{Теорема| statement = Решением уравнения <tex>(4)<\tex> является:
 +
|proof= 111}}
  
 
1)  <tex>\begin{vmatrix}
 
1)  <tex>\begin{vmatrix}
Строка 40: Строка 41:
 
  </tex>
 
  </tex>
 
<br>
 
<br>
 
|proof= 111}}
 
  
 
==Линейное уравнение первого порядка==
 
==Линейное уравнение первого порядка==

Версия 19:05, 20 сентября 2015

Уравнение с разделенными переменными

Определение:
уравнение вида [math]M(x)dx + N(y)dy = 0 \:\: (1)[/math] называется уравнением с разделенными переменными

Решение: [math](1) \:\: \Leftrightarrow \:\: M(x)dx = -N(y)dy[/math] далее интегрируем правую и левую части

Уравнение с разделяемыми переменными

Определение:
уравнение вида [math]M_{1}(x)N_{1}(y)dx + M_{2}(x)N_{2}(y)dy = 0 \:\: (2)[/math] называется уравнением с разделяемыми переменными

Решение: (2) разделим на [math]N_{1}(y)M_{2}(x) \neq 0[/math] и оно сведется к (1). в случае = 0 могут существовать осбые решения.

Однородные уравнения

Определение:
уравнение вида [math]M(x, y)dx + N(x, y)dy = 0 \:\: (3)[/math], где M и N - однородные функции одного измерения, называется однородным уравнением


Определение:
[math]f(x, y) - [/math] однородная функция измерения n [math]\Leftrightarrow \: f(\lambda x, \lambda y) = \lambda^{n}f(x, y)[/math]

Решение: произвести замену [math]t = \frac{y}{x}[/math]


Определение:
[math]\frac{dy}{dx}=f(\frac{y}{x})[/math] - один из видов однородного уравнения.

Уравнения приводящиеся к однородным

[math] todo [/math]

Определение:
уравнение вида [math]\frac{dy}{dx}= f(\frac{a_{1}x + b_{1}y + c_{1}}{a_{2}x + b_{2}y + c_{2}}) (4)[/math] называется уравнением приводящимся к однородному

{{Теорема| statement = Решением уравнения [math](4)\lt \tex\gt является: |proof= 111}} 1) \lt tex\gt \begin{vmatrix} a_{1} & b_{1}\\ a_{2} & b_{2} \end{vmatrix} \neq 0 \Rightarrow \left\{\begin{matrix} x = u + \alpha \\ y = v + \beta \end{matrix}\right. [/math]

[math] (\alpha, \beta) : \left\{\begin{matrix} a_{1}x + b_{1}y + c_{1} = 0\\ a_{2}x + b_{2}y + c_{2} = 0 \end{matrix}\right.[/math]

Тогда получаем однородное уравнение.

2) [math]\begin{vmatrix} a_{1} & b_{1}\\ a_{2} & b_{2} \end{vmatrix} = 0 \Rightarrow [/math] пусть [math]a_{1} x + b_{1} y + c_{1} = t [/math]

Линейное уравнение первого порядка

Определение:
уравнение вида [math]\frac{dy}{dx} = p(x) y + q(x)(5)[/math] называется линейным уравнением [math]I[/math] порядка


Определение:
Если [math]q(x) = 0[/math], то уравнение [math](5) [/math] называется однородным линейным уравнением [math]I[/math] порядка


Способ решения методом Бернулли

Пусть [math] y(x) = u(x) v(x)[/math], тогда:

[math] u'(x) v(x) + u(x) v'(x) = p(x) u(x) v(x) + q(x) [/math]

[math] u'(x) v(x) + u(x) [ v'(x) - p(x) v(x)] = q(x) [/math], назовем это уравнение [math](5a)[/math]

Пусть [math] v(x) [/math] такого, что:

[math] v'(x) - p(x) v(x) = 0 [/math]

Тогда:

[math]\frac{dv(x)}{dx} - p(x) v(x) = 0 [/math]. Домножим на [math] \frac{dx}{dv(x)} [/math] [math]\frac{dv}{v} - p(x) dx = 0 [/math]. Отсюда получаем:

[math]ln(v) = \int p(x)dx + C[/math]

[math]v(x) = e^{C+ \int p(x)dx} = C e^{\int p(x)dx}[/math]

Пусть [math] C = 1[/math]. Тогда из [math](5a)[/math] получаем:

[math] u'(x) e^{\int p(x)dx} = q(x) [/math]

[math] u(x) = \int q(x) e^{\int p(x)dx} dx + C_{1} [/math]. Тогда

[math]y(x) = e^{\int p(x)dx} [ \int q(x) e^{\int p(x)dx} dx + C_{1}] [/math]

Способ решения методом Лагранжа

Рассмотрим:

[math] \frac{dx}{dy} = p(x) y [/math]

Рассмотрим общее однородное(O.O) и общее неоднородное решение(O.H): [math] y_{O.O} = C e^{\int p(x)dx}[/math] (из док-ва Бернулли)

Пусть:

[math] y_{O.H} = C(x) e^{\int p(x)dx}[/math]

[math] C'(x) e^{\int p(x)dx} + C(x) p(x) e^{\int p(x)dx} = p(x) C(x) e^{\int p(x)dx} + q(x) [/math]

[math] C'(x) = q(x) e^{-\int p(x)dx} [/math]

[math] C(x) = \int q(x) C(x) e^{\int p(x)dx} dx + C_{1} [/math]

[math]y(x) = e^{\int p(x)dx} [ \int q(x) e^{\int p(x)dx} dx + C_{1}] [/math]

Уравнение в полных дифференциалах

Определение:
Уравнение вида: [math]M(x, y)dx + N(x, y)dy = 0 \:\: (6)[/math] называется уравнением в полных дифференциалах, если [math](6) = du(x, y)[/math]

т.к. [math]du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -[/math] общий интеграл.

Теорема:
Пусть [math]M(x, y), N(x, y) \in C(G)[/math], где G - односвязная область, и [math]\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)[/math];
Тогда [math]Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial n(x, y)}{\partial x} [/math]
Доказательство:
[math]\triangleright[/math]
сами доказывайте.
[math]\triangleleft[/math]

Решение: [math]u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - [/math] Общее решение.

Уравнение, приводящееся к уравнениию в полных дифференциалах

в условиях предыдущего определения, но [math]\frac{\partial M}{\partial y} \not\equiv \frac{\partial N}{\partial x}[/math]. Домножим (6) на [math]\mu(x, y): \:[/math]
[math]M \frac{\partial \mu}{\partial y} + \mu \frac{\partial M }{\partial y} = N \frac{\partial \mu}{\partial x} + \mu \frac{\partial N}{\partial x} \: \Rightarrow \: M \frac{\partial \mu}{\partial y} - N \frac{\partial \mu}{\partial x} = \mu (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) \: (*)[/math]

Утверждение:
Пусть [math]\exists \omega (x, y) \in C'(G): \:\:[/math] [math] \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{ N \frac{\partial \omega}{\partial x} - M \frac{\partial \omega}{\partial y}} = \psi(\omega) \: \Rightarrow \mu = e^{\int \psi(\omega)d\omega}[/math]
[math]\triangleright[/math]

Пусть [math]\mu = h(\omega) \: \Rightarrow \: M \frac{dh}{d\omega}\frac{\partial \omega}{\partial y} - N \frac{dh}{d\omega}\frac{\partial \omega}{\partial x} = h(\omega)(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})[/math]

перегреппируем: [math]\frac{dh}{d\omega} = h(\omega)\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})}{M\frac{\partial \omega}{\partial y} - N \frac{\partial \omega}{\partial x}} \: \Rightarrow[/math]
[math]\frac{dh}{d\omega} = h(\omega)\psi(\omega)[/math]

[math]\mu(x, y) = h(\omega) = e^{\int\psi(\omega)d\omega}[/math]
[math]\triangleleft[/math]

только как решать все равно не понятно.

Уравнение Бернулли

Определение:
уравнение вида [math]\frac{dy}{dx} = p(x) y + q(x)y^m, \: m \in \mathbb{R} \setminus \left \{ 0, 1 \right \}\:[/math], называется уравнением Бернулли.

Решение:
[math]y^{-m}y' = p(x)y^{1-m}+q(x), y \neq 0[/math]
[math](\frac{y^{1-m}}{1-m})' - p(x)y^{1-m}= q(x)[/math], пусть [math]z(x) = y^{1-m} \: \Rightarrow[/math]
[math]z'(x) - p(x)(1 - m)z(x) = (1 - m)q(x) \: - [/math]линейное относительно z уравнение.

Уравнение Риккати

Теорема:
{{{statement}}}
Доказательство:
[math]\triangleright[/math]
111
[math]\triangleleft[/math]