Модуль непрерывности функции — различия между версиями
(→Теорема о выпуклом модуле непрерывности) |
(добавлена часть про модуль непрерывности функции) |
||
Строка 59: | Строка 59: | ||
:<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)</tex> | :<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)</tex> | ||
|proof= | |proof= | ||
− | По | + | По свойству 2 имеем <tex>\omega(\lambda t) \le (1 + \lambda) \omega (t)</tex> для всех <tex>\lambda</tex> и <tex>t \geq 0</tex>. Обозначим <tex>u = \lambda t</tex>, тогда <tex>\lambda = \frac ut</tex>. |
Перепишем равенство : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Определим теперь функцию <tex>\omega^*(u) = \inf\limits_{t > 0} (1 + \frac ut)\omega(t)</tex>. | Перепишем равенство : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Определим теперь функцию <tex>\omega^*(u) = \inf\limits_{t > 0} (1 + \frac ut)\omega(t)</tex>. | ||
Строка 69: | Строка 69: | ||
#<tex>\omega^*</tex> не убывает. В самом деле, <tex>u_1 \leq u_2 \Rightarrow (1 + \frac{u_1}t)\omega(t) \leq (1 + \frac{u_2}t)\omega(t)</tex>. Переходя к инфимумам обеих частей последнего неравенства, получаем <tex>u_1 \leq u_2 \Rightarrow \omega^*(u_1) \leq \omega^*(u_2)</tex>. | #<tex>\omega^*</tex> не убывает. В самом деле, <tex>u_1 \leq u_2 \Rightarrow (1 + \frac{u_1}t)\omega(t) \leq (1 + \frac{u_2}t)\omega(t)</tex>. Переходя к инфимумам обеих частей последнего неравенства, получаем <tex>u_1 \leq u_2 \Rightarrow \omega^*(u_1) \leq \omega^*(u_2)</tex>. | ||
− | Еще раз вспомним | + | Еще раз вспомним свойство № 2 модулей непрерывности : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Рассматривая точные нижние грани обеих частей и используя определение ф-ции <tex>\omega^*(u)</tex>, получим требуемые в условии теоремы неравенства. |
Итак, построенная нами функция <tex>\omega^*(t)</tex> является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. | Итак, построенная нами функция <tex>\omega^*(t)</tex> является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. | ||
+ | }} | ||
+ | |||
+ | == Модуль непрерывности функции == | ||
+ | Пусть <tex>f</tex> - функция, непрерывная на <tex>[a; b]</tex>. Пусть <tex>h \ge 0</tex>. Положим | ||
+ | :<tex>\omega(f, h) = \sup\limits_{|x'' - x'| \le h}|f(x'') - f(x')|</tex>. | ||
+ | |||
+ | Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции <tex>f</tex>. | ||
+ | |||
+ | Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции <tex>f</tex>: | ||
+ | :<tex>\omega^* \in \Omega^*: \omega(f, h) \le \omega^*(h) \ \forall h \ge 0</tex>. | ||
− | } | + | Опеределим <tex>\omega^*(f, h) = \inf\limits_{\omega^* \in \Omega^*(f)} \omega^*(h)</tex>, где <tex>\Omega^*(f)</tex> - класс выпуклых мажорант функции <tex>f</tex> (то есть, все те модули непрерывности, удовлетворяющие написанному выше неравенству). |
+ | |||
+ | Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции <tex>f</tex>. | ||
+ | По доказанной выше теореме получаем следующее следствие: | ||
+ | :<tex>\omega(f, \lambda h) \le \omega^* (f, \lambda h) \le (1 + \lambda) \ \omega(f, h) \ \forall\lambda, h \ge 0</tex>, а также: | ||
+ | :<tex>\omega(f, h) \le \omega^* (f, h) \le 2 \omega(f, h)</tex> | ||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] |
Версия 22:30, 19 ноября 2010
Определение: |
Функция
| называется модулем непрерывности, если:
Содержание
Свойства модулей непрерывности
1)
Доказательство ведется по индукции. Для неравенство тривиально. Пусть утверждение верно для . Тогда , ч. т. д.
2)
Доказательство:
3) Пусть для некоторой функции
Видно, что треубется доказать только полуаддитивность.
Т. к. , то .
Тогда .
4) Пусть
Докажем, опираясь на пункт 3. Покажем, что убывает.
, - выпуклая комбинация 0 и .
Из выпуклости следует: . Но , следовательно, , то есть, функция является убывающей.
Примеры
По свойству четыре видно, что можно построить сколь угодно много модулей непрерывности. Например,
- функция возрастает.
- функция является выпуклой вверх.
Из этого факта следует неравенство
Теорема о выпуклом модуле непрерывности
Класс модулей непрерывности обозначим
. Класс выпуклых вверх модулей непрерывности обозначим .Важное значение имеет теорема о выпуклом модуле непрерывности, которая основывается на следующем факте:
Утверждение: |
Пусть имеется семейство выпуклых функций . Тогда — также выпуклая функция. |
Требуется показать, что: Так как все функции семейства выпуклы вверх, то для любого верно:Но по определению , следовательно, |
Теорема (о выпуклом модуле непрерывности): |
Пусть . Тогда существует такая, что
|
Доказательство: |
По свойству 2 имеем для всех и . Обозначим , тогда .Перепишем равенство : . Определим теперь функцию . Рассмотрим семейство функций . Каждая функция из этого семейства выпукла как линейная. Но тогда выпукла вверх по доказанному выше факту.Докажем теперь, что - модуль непрерывности. Действительно,
Еще раз вспомним свойство № 2 модулей непрерывности : Итак, построенная нами функция . Рассматривая точные нижние грани обеих частей и используя определение ф-ции , получим требуемые в условии теоремы неравенства. является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. |
Модуль непрерывности функции
Пусть
- функция, непрерывная на . Пусть . Положим- .
Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции
.Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции
:- .
Опеределим
, где - класс выпуклых мажорант функции (то есть, все те модули непрерывности, удовлетворяющие написанному выше неравенству).Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции
.По доказанной выше теореме получаем следующее следствие:
- , а также: