Формула Эйлера — различия между версиями
Novik (обсуждение | вклад) м (→Трехмерный случай) |
Shersh (обсуждение | вклад) м (→Источники информации) |
||
Строка 71: | Строка 71: | ||
==Источники информации== | ==Источники информации== | ||
− | * Асанов М,, Баранский В., Расин В. {{---}} Дискретная математика {{---}} Графы, матроиды, алгоритмы (стр. 104 - 107) | + | * Асанов М,, Баранский В., Расин В. {{---}} Дискретная математика {{---}} Графы, матроиды, алгоритмы (стр. 104-107) |
− | * О.Оре {{---}} Графы и их применение (стр. 131 - 135) | + | * О.Оре {{---}} Графы и их применение (стр. 131-135) |
*[https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%D0%B4%D0%BB%D1%8F_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%B3%D1%80%D0%B0%D0%BD%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2 Википедия {{---}} Теорема Эйлера для многоугольников] | *[https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%D0%B4%D0%BB%D1%8F_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%B3%D1%80%D0%B0%D0%BD%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2 Википедия {{---}} Теорема Эйлера для многоугольников] | ||
* [http://www.geometry2006.narod.ru/Lecture/Mnogogr/Mnogogr.htm Выпуклые многогранники] | * [http://www.geometry2006.narod.ru/Lecture/Mnogogr/Mnogogr.htm Выпуклые многогранники] |
Версия 20:50, 10 октября 2015
Двумерный случай
Теорема (формула Эйлера): |
Доказательство: |
Воспользуемся методом математической индукции по количеству граней графа.
|
Теорема (следствие из формулы Эйлера): |
Пусть планарный обыкновенный граф с вершинами ( ), ребрами и гранями. Тогда связный |
Доказательство: |
Поскольку | не содержит петель и кратных ребер, то каждая грань граничит хотя бы с тремя ребрами. Пусть, двигаясь вдоль -й грани мы пройдем ребер. Очевидно, что . Поскольку , получаем . Из формулы Эйлера , то есть .
Трехмерный случай
Покажем, что в трехмерном случае так же имеет место формула Эйлера.
Теорема (формула Эйлера для многогранников): |
Для любого выпуклого многогранника имеет место равенство , где — число вершин, — число ребер и — число граней данного многогранника. |
Доказательство: |
Для доказательства соотношения Эйлера представим поверхность выпуклого многогранника сделанной из эластичного материала. Удалим (вырежем) одну из его граней и оставшуюся поверхность растянем на плоскости. Получим планарный граф, содержащий внутренних граней, вершин и ребер.Тогда справедливо уже доказанное соотношение: Подставляем . и получаем . |
Теорема (следствие из формулы Эйлера для многогранников): |
В любом выпуклом многограннике имеется или треугольная грань, или трехгранный угол. Более того, число треугольных граней плюс число трехгранных углов больше или равно восьми. |
Доказательство: |
Обозначим через число вершин выпуклого многогранника, в которых сходится ребер. Тогда для общего числа вершин имеет место равенствоАналогично, обозначим через число граней выпуклого многогранника, у которых имеется ребер. Тогда для общего числа граней имеет место равенствоПосчитаем число ребер многогранника. Имеем: , .По теореме Эйлера выполняется равенство . Подставляя вместо , и их выражения, получим:Следовательно, . , значит, число треугольных граней плюс число трехгранных углов больше или равно восьми. |
Источники информации
- Асанов М,, Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы (стр. 104-107)
- О.Оре — Графы и их применение (стр. 131-135)
- Википедия — Теорема Эйлера для многоугольников
- Выпуклые многогранники