Построение компонент вершинной двусвязности — различия между версиями
Novik (обсуждение | вклад) (→Двупроходный алгоритм) |
Novik (обсуждение | вклад) м (→Псевдокод второго прохода) |
||
Строка 31: | Строка 31: | ||
'''if''' '''not''' visited[<tex>v</tex>] | '''if''' '''not''' visited[<tex>v</tex>] | ||
dfs(<tex>v</tex>, -1, -1) | dfs(<tex>v</tex>, -1, -1) | ||
− | |||
|} | |} | ||
− | + | ||
Ребра каждой из компонент вершинной двусвязности окажутся окрашенными в свой цвет. | Ребра каждой из компонент вершинной двусвязности окажутся окрашенными в свой цвет. | ||
<br> | <br> |
Версия 22:17, 10 ноября 2015
Содержание
Двупроходный алгоритм
Найти компоненты вершинной двусвязности неориентированного графа можно с помощью обхода в глубину.
Первый проход:
Используем первый проход, чтобы найти точки сочленения.
Второй проход:
Точка сочленения принадлежит как минимум двум компонентам вершинной двусвязности.
Вершина является точкой сочленения, если у нее есть сын .
Это также значит, что ребро содержится в другой компоненте вершинной двусвязности, нежели ребро по которому мы пришли в вершину , используя поиск в глубину. Получается, что перейдя по этому ребру, мы окажемся в другой компоненте вершинной двусвязности.
Используем это свойство, чтобы окрасить компоненты вершинной двусвязности в различные цвета.
Псевдокод второго прохода
function( , color, parent): for : if == parent continue if not visited[ ] if up[ ] tin[ ] newColor = maxColor++ col[ ] = newColor dfs( , newColor, ) else col[ ] = color dfs( , color, ) else if up[ ] tin[ ] col[ ] = color for : if not visited[ ] dfs( , -1, -1) |
Ребра каждой из компонент вершинной двусвязности окажутся окрашенными в свой цвет.
В алгоритме выполняется два прохода , каждый из которых работает . Значит время работы алгоритма .
Однопроходный алгоритм
Заведем стек, в который будем записывать все дуги в порядке их обработки. Если обнаружена точка сочленения, дуги очередного блока окажутся в этом стеке, начиная с дуги дерева обхода, которая привела в этот блок, до верхушки стека.
Таким образом, каждый раз находя компоненту вершинной двусвязности мы сможем покрасить все ребра, содержащиеся в ней, в новый цвет.
Доказательство корректности алгоритма
Предположим, что граф содержит точку сочленения
- Все вершины являются потомками в дереве обхода;
- Все вершины будут пройдены в течение периода серого состояния ;
- В
Значит все дуги
Псевдокод
function( , parent): enter[ ] return[ ] time++ for : if == parent continue if not visited[ ] stack.push( ) ( ) if return[ ] enter[ ] color maxColor++ while stack.top() != colors[stack.top()] color stack.pop() colors[ ] color stack.pop() if return[ ] < return[ ] return[ ] return[ ] else if enter[ ] < enter[ ] stack.push( ) else return[ ] > enter[ ] return[ ] return[ ] ... for : if not visited[ ] time 0 ( , -1)
Во время алгоритма совершается один проход , который работает за . Внутри него совершается еще цикл, который суммарно выполняет операций, т.к. каждое ребро может быть добавлено в стек только один раз. Следовательно, общее время работы алгоритма
Источники информации
- В.А.Кузнецов, А.М.Караваев. "Оптимизация на графах" - Петрозаводск, Издательство ПетрГУ 2007