Изменения
→а2...0 короче чем а1...0. Очевидно имелся ввиду а2...00
Покажем, что до генерации веткора из <tex>n</tex> нулей генерируются все остальные битовые вектора. Допустим, мы всё же получили вектор из всех нулей раньше, чем перебрали все вектора. Тогда рассмотрим множество векторов <tex>Z</tex>, которые не были сгенерированы алгоритмом и оканчиваются на ноль.
Пусть <tex>a_1 a_2 \dots a_{n - 1} 0 \in Z</tex>. Докажем, что <tex>a_2 \dots a_{n - 1} 0 0 \in Z</tex>. От противного, пусть вектор <tex>a_2 \dots a_{n - 1} 0 0 </tex> был сгенерирован. Тогда ему предшествовал вектор <tex>b_1 a_2 \dots a_{n - 1} 0</tex>. Так как по предположению <tex>b_1 \neq a_1</tex>, то в коде может быть только один вектор такого вида, а в таком случае алгоритм может сгенерировать только <tex>a_2 \dots a_{n - 1} 0 1</tex>.
Значит, если множество <tex>Z</tex> непусто, то оно содержит вектор из <tex>n</tex> нулей. Но это противоречит тому, что вектор из <tex>n</tex> нулей был сгенерирован. Следовательно, это предположение не верно и все вектора с нулём в последней позиции были сгенерированы.