2SAT — различия между версиями
(→Применение 2-SAT задач: Добавлен пример применения 2-SAT) |
(Временно убран пример. Исправлено вступление, алгоритм решения) |
||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
{{Задача | {{Задача | ||
− | |definition = 2-SAT (2-satisfiability) выполнимость | + | |definition = <b>2-SAT </b> (2-satisfiability) выполнимость функции — задача распределения аргументов в булевой [[КНФ|КНФ]] функции, записанной в виде [[Специальные_формы_КНФ|2-КНФ (КНФ Крома)]], таким образом, чтобы результат данной функции был равен <tex> 1 </tex>. |
}} | }} | ||
− | == Алгоритм | + | == Алгоритм решения == |
Строка 12: | Строка 9: | ||
Несложно заметить, что это равнозначно записи <tex>(\overline a \to b \wedge b \to \overline a) </tex>. | Несложно заметить, что это равнозначно записи <tex>(\overline a \to b \wedge b \to \overline a) </tex>. | ||
− | Построим ориентированный граф, где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: <tex>\overline a \to b </tex> и <tex> b \to \overline a </tex> для каждого дизъюнкта функции <tex> a \vee b </tex>. | + | Построим [[Основные_определения_теории_графов|ориентированный граф]], где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: <tex>\overline a \to b </tex> и <tex> b \to \overline a </tex> для каждого дизъюнкта функции <tex> a \vee b </tex>. |
{{Теорема | {{Теорема | ||
Строка 18: | Строка 15: | ||
Для того, чтобы данная задача 2-SAT имела решение, необходимо и достаточно, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. <tex>(\overline x \to x \wedge x \to \overline x) </tex>. | Для того, чтобы данная задача 2-SAT имела решение, необходимо и достаточно, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. <tex>(\overline x \to x \wedge x \to \overline x) </tex>. | ||
|proof= | |proof= | ||
− | + | <tex>(\Rightarrow)</tex>Докажем достаточность: Пусть 2-SAT имеет решение. Докажем, что не может быть такого, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> можно достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> можно достичь <tex> x </tex> одновременно. <tex>(\overline x \to x \wedge x \to \overline x) </tex>. Тогда чтобы из <tex> \overline x </tex> достичь <tex> x </tex> <tex> (\overline x \to x </tex> было верным), <tex> x </tex> должен быть равен <tex> 1 </tex>. С другой стороны для того, чтобы из <tex> x </tex> достичь <tex> \overline x </tex> <tex> (\overline x \to x </tex> было верным), <tex> x </tex> должен быть равен 0. Отсюда следует противоречие. | |
− | + | <tex>(\Leftarrow)</tex>Докажем необходимость: Пусть для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. Докажем, что этого достаточно, чтобы 2-SAT имело решение. Пусть из <tex> \overline x </tex> можно достичь <tex> x </tex>, но из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex>. Докажем, что из <tex> x </tex> не достижимо такой <tex> y </tex>, что из <tex> y </tex> достижимо <tex> \overline y </tex>. (т.е. <tex> x \to y \to \overline y (x = 1, y = 0)) </tex>. Если из <tex> x \to y </tex>, то <tex> \overline x \vee y </tex>, отсюда следует <tex> \overline y \to \overline x </tex>. Тогда <tex> x \to y \to \overline y \to \overline x </tex>. Следовательно <tex> x \to \overline x </tex>. Противоречие. | |
}} | }} | ||
Теперь мы можем собрать весь алгоритм воедино: | Теперь мы можем собрать весь алгоритм воедино: | ||
− | + | #Построим граф импликаций. | |
− | + | #[http://e-maxx.ru/algo/strong_connected_components Найдём в этом графе компоненты сильной связности за время <tex>O(N + M)</tex>] | |
− | + | #Пусть <tex>comp[v]</tex> — это номер компоненты сильной связности, которой принадлежит вершине <tex>v</tex>. Проверим, что для каждой переменной <tex>x</tex> вершины <tex>x</tex> и <tex>\overline x</tex> лежат в разных компонентах, т.е. <tex>comp[x] \ne comp[\overline x]</tex>. Если это условие не выполняется, то вернуть "решение не существует". | |
− | + | #Если <tex>comp[x] > comp[\overline x]</tex>, то переменной x выбираем значение true, иначе - false. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Компоненты сильной связности найдем за <tex>O(N + M)</tex>, затем проверим каждую из <tex>N</tex> переменных за <tex>O(N)</tex>. Следовательно асимптотика <tex>O(N + M)</tex> | |
− | |||
− | |||
== См. также == | == См. также == | ||
− | |||
− | |||
− | |||
*[[3CNFSAT | NP-полнота задачи о выполнимости булевой формулы в форме 3-КНФ]] | *[[3CNFSAT | NP-полнота задачи о выполнимости булевой формулы в форме 3-КНФ]] | ||
− | |||
== Источники информации == | == Источники информации == | ||
*[http://e-maxx.ru/algo/2_sat MAXimal :: algo :: Задача 2-SAT (2-CNF) ] | *[http://e-maxx.ru/algo/2_sat MAXimal :: algo :: Задача 2-SAT (2-CNF) ] | ||
− | *[https://en.wikipedia.org/wiki/2-satisfiability 2-satisfiability | + | *[https://en.wikipedia.org/wiki/2-satisfiability 2-satisfiability — Википедия] |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Булевы функции ]] | [[Категория: Булевы функции ]] |
Версия 13:33, 10 декабря 2015
Задача: |
2-SAT (2-satisfiability) выполнимость функции — задача распределения аргументов в булевой КНФ функции, записанной в виде 2-КНФ (КНФ Крома), таким образом, чтобы результат данной функции был равен . |
Алгоритм решения
Рассмотрим любой дизъюнкт функции:
. Несложно заметить, что это равнозначно записи .Построим ориентированный граф, где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: и для каждого дизъюнкта функции .
Теорема: |
Для того, чтобы данная задача 2-SAT имела решение, необходимо и достаточно, чтобы для любой переменной из вершины нельзя достичь и из вершины нельзя достичь одновременно. . |
Доказательство: |
Докажем достаточность: Пусть 2-SAT имеет решение. Докажем, что не может быть такого, чтобы для любой переменной из вершины можно достичь и из вершины можно достичь одновременно. . Тогда чтобы из достичь было верным), должен быть равен . С другой стороны для того, чтобы из достичь было верным), должен быть равен 0. Отсюда следует противоречие. Докажем необходимость: Пусть для любой переменной из вершины нельзя достичь и из вершины нельзя достичь одновременно. Докажем, что этого достаточно, чтобы 2-SAT имело решение. Пусть из можно достичь , но из вершины нельзя достичь . Докажем, что из не достижимо такой , что из достижимо . (т.е. . Если из , то , отсюда следует . Тогда . Следовательно . Противоречие. |
Теперь мы можем собрать весь алгоритм воедино:
- Построим граф импликаций.
- Найдём в этом графе компоненты сильной связности за время
- Пусть — это номер компоненты сильной связности, которой принадлежит вершине . Проверим, что для каждой переменной вершины и лежат в разных компонентах, т.е. . Если это условие не выполняется, то вернуть "решение не существует".
- Если , то переменной x выбираем значение true, иначе - false.
Компоненты сильной связности найдем за
, затем проверим каждую из переменных за . Следовательно асимптотика