Хроматическое число планарного графа — различия между версиями
(→Источники) |
|||
Строка 11: | Строка 11: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть граф <tex>G</tex> | + | Пусть граф <tex>G</tex> — планарный. Тогда <tex> \chi (G) \le 6.</tex> |
|proof= | |proof= | ||
Докажем по индукции. | Докажем по индукции. | ||
Строка 25: | Строка 25: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть граф <tex>G</tex> | + | Пусть граф <tex>G</tex> — планарный. Тогда <tex> \chi (G) \le 5.</tex> |
|proof= | |proof= | ||
[[Файл:Planar chromatic number 1.png|230px|thumb|right|u и смежные ей вершины]] | [[Файл:Planar chromatic number 1.png|230px|thumb|right|u и смежные ей вершины]] | ||
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. | Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. | ||
− | Обозначим за <tex> u </tex> | + | Обозначим за <tex> u </tex> — возвращаемую вершину, <tex> v^{(k)} </tex> — вершину, покрашенную в <tex> k </tex> цвет. |
Если среди вершин, смежных <tex> u </tex>, есть две вершины одного цвета, значит остаётся по меньшей мере один свободный цвет, в который мы и покрасим <tex> u </tex>. | Если среди вершин, смежных <tex> u </tex>, есть две вершины одного цвета, значит остаётся по меньшей мере один свободный цвет, в который мы и покрасим <tex> u </tex>. | ||
Строка 43: | Строка 43: | ||
Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в графе есть цикл <tex> u v_1^{(1)} v_2^{(3)} v_3^{(1)} ... v_{k-1}^{(1)} v_k^{(3)} u </tex>. | Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в графе есть цикл <tex> u v_1^{(1)} v_2^{(3)} v_3^{(1)} ... v_{k-1}^{(1)} v_k^{(3)} u </tex>. | ||
− | Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся | + | Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся — раскраска получена. |
− | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются помимо вершины <tex> u </tex> по крайней мере ещё в одной, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго | + | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются помимо вершины <tex> u </tex> по крайней мере ещё в одной, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго — разных цветов. Значит такой случай наступить не мог. |
}} | }} | ||
{| cellpadding="10" | {| cellpadding="10" | ||
− | | Успешное перекрашивание || || || || || || Цикл | + | | || || || || Успешное перекрашивание || || || || || || Цикл 1—3, перекрасить не удаётся || |
|- | |- | ||
− | | [[Файл:Planar chromatic number 2.png|264px]] || [[Файл:Planar chromatic number | + | | || || || || [[Файл:Planar chromatic number 2.png|264px]] || || || || || || [[Файл:Planar chromatic number 4.png|228px]] |
+ | |- | ||
+ | | || || || || [[Файл:Planar chromatic number 3.png|264px]] || || || || || || [[Файл:Planar chromatic number 5.png|228px]] | ||
|} | |} | ||
Версия 11:10, 24 декабря 2015
Для планарного графа можно дать оценку сверху на хроматическое число.
Содержание
Раскраска в 6 цветов
Лемма: |
В любом графе степени не больше 5. существует вершина |
Доказательство: |
Предположим это не так. Для любой вершины следствию из теоремы Эйлера . Пришли к противоречию. | графа верно . Если сложить это неравенство для всех , получим . Но по
Теорема: |
Пусть граф — планарный. Тогда |
Доказательство: |
Докажем по индукции.
|
Раскраска в 5 цветов
Теорема: |
Пусть граф — планарный. Тогда |
Доказательство: |
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. Обозначим за — возвращаемую вершину, — вершину, покрашенную в цвет.Если среди вершин, смежных , есть две вершины одного цвета, значит остаётся по меньшей мере один свободный цвет, в который мы и покрасим .Иначе, уложим полученный после удаления граф на плоскость, вернём вершину (пока бесцветную) и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке.Попробуем покрасить в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину в цвет 3. Если среди смежных ей вершин есть вершины , покрасим их в цвет 1, и так далее. Рассмотрим две необычные ситуации, которые могут наступить во время обхода:
Если этот процесс был успешно завершён, то получили правильную раскраску. Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в графе есть цикл .Тогда попытаемся таким же образом перекрасить Если нет, то получили ещё один цикл в цвет 2, а смежную ей в цвет 4 (со последующими перекрасками). Если удастся — раскраска получена. . Но граф планарный, значит два полученных цикла пересекаются помимо вершины по крайней мере ещё в одной, что невозможно, ведь вершины первого цикла и второго — разных цветов. Значит такой случай наступить не мог. |
Успешное перекрашивание | Цикл 1—3, перекрасить не удаётся | ||||||||||
Заметим, что не удаётся составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных
не исключает того, что при их (смежных вершин) раскраске использовались все возможные цвета.Раскраска в 4 цвета
Данная теорема была доказана Кеннетом Аппелем и Вольфгангом Хакеном. Их доказательство сводилось к рассмотрению порядка 2000 графов, 4-раскрашиваемость которых была проверена при помощи компьютера. Подробнее см. здесь.