Splay-дерево — различия между версиями
Shersh (обсуждение | вклад) м (→Статическая оптимальность сплей-дерева) |
|||
Строка 1: | Строка 1: | ||
− | '''Сплей-дерево''' (англ. ''Splay-tree'') — это двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году. | + | '''Сплей-дерево''' (англ. ''Splay-tree'') — это [[Дерево поиска, наивная реализация | двоичное дерево поиска]]. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году. |
==Эвристики== | ==Эвристики== | ||
Строка 8: | Строка 8: | ||
'''Пример''': При последовательном использовании операций "move to root" для вершин <tex>A</tex> и <tex>B</tex> требуется по 6 поворотов, в то время как при использовании операции "splay" для вершины <tex>B</tex> достаточно 3 поворотов. | '''Пример''': При последовательном использовании операций "move to root" для вершин <tex>A</tex> и <tex>B</tex> требуется по 6 поворотов, в то время как при использовании операции "splay" для вершины <tex>B</tex> достаточно 3 поворотов. | ||
− | [[file:Move_to_root.png| | + | [[file:Move_to_root.png|750px]] |
− | [[file:Splay.png| | + | [[file:Splay.png|750px]] |
==Операции со splay-деревом== | ==Операции со splay-деревом== | ||
Строка 48: | Строка 48: | ||
==Анализ операции splay== | ==Анализ операции splay== | ||
− | Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>x</tex> — это величина, обозначаемая <tex>r(x)</tex> и равная <tex>\log_2 C(x)</tex>, где <tex>C(x)</tex> — количество вершин в поддереве с корнем в <tex>x</tex>. | + | [[Амортизационный анализ | Амортизационный анализ]] сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>x</tex> — это величина, обозначаемая <tex>r(x)</tex> и равная <tex>\log_2 C(x)</tex>, где <tex>C(x)</tex> — количество вершин в поддереве с корнем в <tex>x</tex>. |
{{Лемма | {{Лемма | ||
Строка 68: | Строка 68: | ||
Мы утверждаем, что эта сумма не превосходит <tex>3(r'(x) - r(x))</tex>, то есть, что <tex>r(x) + r'(g) - 2r'(x) \leqslant -2</tex>. Преобразуем полученное выражение следующим образом: <tex>(r(x) - r'(x)) + (r'(g) - r'(x)) = \log_2 \dfrac {C(x)}{C'(x)} + \log_2 \dfrac {C'(g)}{C'(x)}</tex>. | Мы утверждаем, что эта сумма не превосходит <tex>3(r'(x) - r(x))</tex>, то есть, что <tex>r(x) + r'(g) - 2r'(x) \leqslant -2</tex>. Преобразуем полученное выражение следующим образом: <tex>(r(x) - r'(x)) + (r'(g) - r'(x)) = \log_2 \dfrac {C(x)}{C'(x)} + \log_2 \dfrac {C'(g)}{C'(x)}</tex>. | ||
− | Из рисунка видно, что <tex>C'(g) + C(x) \leqslant C'(x)</tex>, значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов <tex>\log_2 a + \log_2 b = \log_2 ab</tex>. При <tex>a + b \leqslant 1</tex> произведение <tex>ab</tex> по неравенству между средними не превышает <tex>1 | + | Из рисунка видно, что <tex>C'(g) + C(x) \leqslant C'(x)</tex>, значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов <tex>\log_2 a + \log_2 b = \log_2 ab</tex>. При <tex>a + b \leqslant 1</tex> произведение <tex>ab</tex> по неравенству между средними не превышает <tex>\dfrac{1}{4}</tex>. А поскольку логарифм — функция возрастающая, то <tex>\log_2 ab \leqslant -2</tex>, что и является требуемым неравенством. |
'''zig-zag'''. Выполнено два поворота, амортизированное время выполнения шага <tex>T = 2 + r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)</tex>. Поскольку <tex>r'(x) = r(g)</tex>, то <tex>T = 2 + r'(p) + r'(g) - r(x) - r(p)</tex>. Далее, так как <tex>r(x) \leqslant r(p)</tex>, то <tex>T \leqslant 2 + r'(p) + r'(g) - 2r(x)</tex>. | '''zig-zag'''. Выполнено два поворота, амортизированное время выполнения шага <tex>T = 2 + r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)</tex>. Поскольку <tex>r'(x) = r(g)</tex>, то <tex>T = 2 + r'(p) + r'(g) - r(x) - r(p)</tex>. Далее, так как <tex>r(x) \leqslant r(p)</tex>, то <tex>T \leqslant 2 + r'(p) + r'(g) - 2r(x)</tex>. | ||
Строка 82: | Строка 82: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если к ключам <tex>1 \ldots n</tex>, сложенным в сплей-дерево выполняется <tex>m</tex> запросов, к <tex>i</tex>-му ключу осуществляется <tex>k_i</tex> запросов, где <tex>k_i</tex> | + | Если к ключам <tex>1 \ldots n</tex>, сложенным в сплей-дерево выполняется <tex>m</tex> запросов, к <tex>i</tex>-му ключу осуществляется <tex>k_i</tex> запросов, где <tex>k_i > 0</tex>, то суммарное время работы не превышает <tex>O(m \cdot H(p_1, p_2, \ldots , p_n))</tex>, где <tex>p_i = k_i / m</tex>, <tex>H</tex> — шенноновская энтропия |
|proof= | |proof= | ||
Известно, что <tex>H(p_1, p_2, \ldots , p_n) = -c \cdot \displaystyle \sum_{i=1}^n (p_i \cdot \log_{2}p_i)</tex> {{---}} [[Энтропия_случайного_источника | шенноновская энтропия]]. | Известно, что <tex>H(p_1, p_2, \ldots , p_n) = -c \cdot \displaystyle \sum_{i=1}^n (p_i \cdot \log_{2}p_i)</tex> {{---}} [[Энтропия_случайного_источника | шенноновская энтропия]]. |
Версия 20:09, 2 января 2016
Сплей-дерево (англ. Splay-tree) — это двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году.
Содержание
Эвристики
Для того, чтобы доступ к недавно найденным данным был быстрее, надо, чтобы эти данные находились ближе к корню. Этого мы можем добиться, используя различные эвристики:
- Move to Root — совершает повороты вокруг ребра , где — найденная вершина, — ее предок, пока не окажется корнем дерева. Однако можно построить такую последовательность операций, что амортизированное время доступа к вершине будет .
- Splay — также совершает повороты, но чередует различные виды поворотов, благодаря чему достигается логарифмическая амортизированная оценка. Она будет подробно описана ниже.
Пример: При последовательном использовании операций "move to root" для вершин
и требуется по 6 поворотов, в то время как при использовании операции "splay" для вершины достаточно 3 поворотов.Операции со splay-деревом
splay(tree, x)
"splay" делится на 3 случая:
zig
Если
— корень дерева с сыном , то совершаем один поворот вокруг ребра , делая корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина была нечетной.zig-zig
Если
— не корень дерева, а и — оба левые или оба правые дети, то делаем поворот ребра , где отец , а затем поворот ребра .zig-zag
Если
— не корень дерева и — левый ребенок, а — правый, или наоборот, то делаем поворот вокруг ребра , а затем поворот нового ребра , где — бывший родитель .Данная операция занимает
времени, где — длина пути от до корня.find(tree, x)
Эта операция выполняется как для обычного бинарного дерева, только после нее запускается операция splay.
merge(tree1, tree2)
У нас есть два дерева
и , причём подразумевается, что все элементы первого дерева меньше элементов второго. Запускаем splay от самого большого элемента в дереве (пусть это элемент ). После этого корень содержит элемент , при этом у него нет правого ребёнка. Делаем правым поддеревом и возвращаем полученное дерево.split(tree, x)
Запускаем splay от элемента
и возвращаем два дерева, полученные отсечением правого или левого поддерева от корня, в зависимости от того, содержит корень элемент больше или не больше, чем .add(tree, x)
Запускаем split(tree, x), который нам возвращает деревья
и , их подвешиваем к как левое и правое поддеревья соответственно.remove(tree, x)
Запускаем splay от
элемента и возвращаем Merge от его детей.Анализ операции splay
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины — это величина, обозначаемая и равная , где — количество вершин в поддереве с корнем в .
Лемма: |
Амортизированное время операции splay вершины в дереве с корнем не превосходит |
Доказательство: |
Проанализируем каждый шаг операции splay. Пусть и — ранги вершин после шага и до него соответственно, — предок вершины , а — предок (если есть).Разберём случаи в зависимости от типа шага: zig. Поскольку выполнен один поворот, то амортизированное время выполнения шага (поскольку только у вершин и меняется ранг). Ранг вершины уменьшился, поэтому . Ранг вершины увеличился, поэтому . Следовательно, .zig-zig. Выполнено два поворота, амортизированное время выполнения шага . Поскольку после поворотов поддерево с корнем в будет содержать все вершины, которые были в поддереве с корнем в (и только их), поэтому . Используя это равенство, получаем: , поскольку .Далее, так как , получаем, что .Мы утверждаем, что эта сумма не превосходит , то есть, что . Преобразуем полученное выражение следующим образом: .Из рисунка видно, что , значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов . При произведение по неравенству между средними не превышает . А поскольку логарифм — функция возрастающая, то , что и является требуемым неравенством.zig-zag. Выполнено два поворота, амортизированное время выполнения шага . Поскольку , то . Далее, так как , то .Мы утверждаем, что эта сумма не превосходит , то есть, что . Но, поскольку - аналогично доказанному ранее, что и требовалось доказать.Итого, получаем, что амортизированное время шага zig-zag не превосходит Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить . , поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом). Тогда суммарное время работы splay , где — число элементов в дереве. |
Статическая оптимальность сплей-дерева
Теорема: |
Если к ключам , сложенным в сплей-дерево выполняется запросов, к -му ключу осуществляется запросов, где , то суммарное время работы не превышает , где , — шенноновская энтропия |
Доказательство: |
Известно, что шенноновская энтропия. —Пусть — количество вершин в поддереве с корнем в . А — ранг вершины.Обозначим за корень -дерева. Из предыдущей теоремы известно, чтоПусть |
Теорема о близких запросах в сплей-дереве
Теорема (о близких запросах в сплей-дереве): |
Пусть в сплей-дерево сложены ключи . Зафиксируем один из ключей . Пусть выполняется запросов к ключам. Тогда суммарное время на запросы есть , где — значение в вершине, к которой обращаются в -ый запрос. |
Доказательство: |
Для доказательства теоремы воспользуемся методом потенциалов: . По условию выполняется запросов, следовательно. Введем следующие обозначения:
Пусть — вес дерева. Тогда .Последнее верно, так как при фиксированном , начиная с некоторого места, а именно , ряд сходится.Из определения размера узла следует, что .Также заметим, что для любого от до верно, что , так как максимальное значение знаменателя в определении достигается при и или наоборот.Тогда, воспользовавшись полученными оценками, найдем изменение потенциала сплей-дерева после запросов:. Первое неравенство верно, так как максимальное значение потенциала достигается при , а минимальное при , а значит изменение потенциала не превышает разности этих величин.Обозначим за леммой (можно показать, что она верна для любого фиксированного определения веса узла) получаем, что корень сплей-дерева. Тогда, воспользовавшись вышеуказанной. Докажем, что данное определение потенциала удовлетворяет условию теоремы о методе потенциалов. Для любого верно, что , так как , и , как было показано выше. Так как количество операций на запрос , то и , где — функция из теоремы о методе потенциалов, равная в данном случае . Следовательно, потенциал удовлетворяет условию теоремы.Тогда, подставляя найденные значения в формулу , получаем, что . |
Данная теорема показывает, что сплей-деревья поддерживают достаточно эффективный доступ к ключам, которые находятся близко к какому-то фиксированному ключу.
Splay-деревья по неявному ключу
Splay-дерево по неявному ключу полностью аналогично декартову дереву по неявному ключу, неявным ключом также будет количество элементов дерева, меньших данного. Аналогично, будем хранить вспомогательную величину — количество вершин в поддереве. К операциям, которые уже были представлены в декартовом дереве, добавляется splay, но пересчет в ней тривиален, так как мы точно знаем, куда перемещаются изменяемые поддеревья.