Двоичный каскадный сумматор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Схема)
(Источники информации)
Строка 88: Строка 88:
 
Дерево отрезков вычисляет биты переноса за <tex>O(\log N)</tex>, оставшиеся действия выполняются за <tex>O(1)</tex>. Суммарное время работы {{---}} <tex>O(\log N)</tex>.
 
Дерево отрезков вычисляет биты переноса за <tex>O(\log N)</tex>, оставшиеся действия выполняются за <tex>O(1)</tex>. Суммарное время работы {{---}} <tex>O(\log N)</tex>.
  
 +
 +
== См. также ==
 +
*[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%B0%D1%81%D0%BA%D0%B0%D0%B4%D0%BD%D1%8B%D0%B9_%D1%81%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80 Каскадный сумматор]
 +
 +
[[Категория:Дискретная математика и алгоритмы]]
 +
[[Категория:Схемы из функциональных элементов]]
  
 
== Источники информации ==
 
== Источники информации ==
Строка 95: Строка 101:
  
 
* [http://bookfi.net/book/637011 М.И. Богданович "Цифровые интегральные микросхемы" 1996г.]
 
* [http://bookfi.net/book/637011 М.И. Богданович "Цифровые интегральные микросхемы" 1996г.]
 
  
 
== См. также ==
 
== См. также ==

Версия 01:03, 19 января 2016

Определение:
Двоичный каскадный сумматор - Binary adder — цифровая схема, осуществляющая сложение двух многоразрядных двоичных чисел, с ускоренным формированием разрядов переноса.


Принцип работы

Используемые обозначения: [math]X_{i}, Y_{i}[/math][math]i[/math]-ый разряд суммируемых чисел, [math]C_{i}, C_{i+1}[/math] — биты переноса, [math]F_{i}[/math] — результат сложения.

Рассмотрим один элемент линейного каскадного сумматора - Ripple-carry adder. В некоторых случаях бит переноса [math]C_{i+1}[/math] зависит только от значений [math]X_{i}[/math] и [math]Y_{i}[/math]:

  • если [math]X_{i} = Y_{i} = 1[/math], то [math]C_{i+1} = 1[/math],
  • если [math]X_{i} = Y_{i} = 0[/math], то [math]C_{i+1} = 0[/math];

Иначе ([math]X_i \neq Y_i[/math]) бит переноса не изменяется, то есть [math]C_{i + 1} = C_i[/math].

Три случая называются следующим образом:

  • [math] generate[/math] — "порождение" переноса,
  • [math]kill[/math] — "уничтожение" переноса,
  • [math]propagate[/math] — "проталкивание" переноса;

Поскольку последовательное применение этих трёх действий над переносами принадлежит также одному из этих типов, то можно определить композицию действий над переносами. Обозначим композицию значком [math]\otimes[/math] и построим таблицу значений (в столбце первый аргумент, в строке — второй):

Пример композиции
Таблица значений
[math]\otimes[/math] [math]k[/math] [math]p[/math] [math]g[/math]
[math]k[/math] [math]k[/math] [math]k[/math] [math]g[/math]
[math]p[/math] [math]k[/math] [math]p[/math] [math]g[/math]
[math]g[/math] [math]k[/math] [math]g[/math] [math]g[/math]

Поскольку функция ассоциативна, то можно распространить её на любое количество аргументов. Более того, поскольку для любого действия [math]x[/math] выполняется равенство [math]x \otimes p = x[/math], то функцию от нескольких действий можно определить как "последнее не [math]p[/math]".

Схема

Сумматор состоит из двух частей. Первая часть — это группа полных сумматоров, вычисляющих ответ. Вторая часть — дерево отрезков, с помощью которого вычисляется бит переноса.

Схема двоичного каскадного сумматора






















Обозначения

  • [math]+ [/math] — полный сумматор, вычисляет результат сложения,
  • [math]\bigotimes[/math] — блок вычисления композиции двух переносов,
  • [math]\bigodot[/math] — блок вычисления [math]C_{i}[/math], старшего бита сумматора;

Схемная сложность

Дерево отрезков вычисляет биты переноса за [math]O(\log N)[/math], оставшиеся действия выполняются за [math]O(1)[/math]. Суммарное время работы — [math]O(\log N)[/math].


См. также

Источники информации

См. также