Дисперсия случайной величины — различия между версиями
Строка 10: | Строка 10: | ||
отклонения случайной величины от ее математического ожидания. | отклонения случайной величины от ее математического ожидания. | ||
− | + | {{Утверждение | |
− | + | |statement=В силу [[ Линейность математического ожидания|линейности математического ожидания]] справедлива формула: | |
− | *: <tex>D \xi = E\xi^2 - (E\xi)^2</tex> | + | *:<tex>D \xi = E\xi^2 - (E\xi)^2</tex> |
+ | |proof=<tex>D \xi = E(\xi - E\xi)^2 = E(\xi^2 -2(E\xi)\xi + (E\xi)^2) = </tex> | ||
+ | <tex>= E\xi^2 + (E\xi)^2 - 2(E\xi)E\xi = E\xi^2 - (E\xi)^2 </tex> | ||
+ | }} | ||
== Линейность == | == Линейность == |
Версия 15:45, 27 февраля 2016
Определение: |
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: , где — случайная величина, а — символ, обозначающий математическое ожидание |
Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.
Утверждение: |
В силу линейности математического ожидания справедлива формула:
|
|
Содержание
Линейность
Теорема: |
Если и — независимые случайные величины, то: |
Доказательство: |
|
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
- Если случайная величина равна константе, то её дисперсия равна нулю:
- Дисперсия суммы двух случайных величин равна:
- ковариация , где — их
- , где — константа. В частности,
- , где — константа.
Связь с центральным моментом
Определение: |
Центральным моментом (англ. central moment) | -ого порядка случайной величины называется величина , определяемая формулой .
Заметим, что если
равно двум, то . Таким образом, дисперсия является центральным моментом второго порядка.Пример
Рассмотрим простой пример вычисления математического ожидания и дисперсии.
Задача: |
Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска. |
Вычислим математическое ожидание:
Вычислим дисперсию:
См. также
Источники информации
- Романовский И. В. Дискретный анализ, 3-е изд.: Издательский дом "Невский диалект", 2003 — стр. 68.
- Википедия — Дисперсия случайной величины
- Wikipedia — Variance
- EXPonenta.ru — Числовые характеристики случайных величин