Алгоритм Апостолико-Крочемора — различия между версиями
(→Асимптотика алгоритма) |
(→Описание алгоритма) |
||
Строка 14: | Строка 14: | ||
}} | }} | ||
− | Введем обозначение: пусть <tex>t[i]</tex> {{---}} длина наибольшего бордера для <tex>x[0 .. i - 1]</tex> за которым следует символ <tex>c \neq x[i]</tex> и <tex>-1</tex> если нет такого помеченного бордера, где <tex>0 < i \le m</tex> (<tex>t[0] = -1</tex>). Затем, после сдвига, сравнение можно продолжить между символами <tex>x[t[i]]</tex> и <tex>y[i + j]</tex> не потеряв никакого вхождения <tex>x</tex> в <tex>y</tex> и избежав отступа по тексту (смотри | + | Введем обозначение: пусть <tex>t[i]</tex> {{---}} длина наибольшего бордера для <tex>x[0 .. i - 1]</tex> за которым следует символ <tex>c \neq x[i]</tex> и <tex>-1</tex> если нет такого помеченного бордера, где <tex>0 < i \le m</tex> (<tex>t[0] = -1</tex>). Затем, после сдвига, сравнение можно продолжить между символами <tex>x[t[i]]</tex> и <tex>y[i + j]</tex> не потеряв никакого вхождения <tex>x</tex> в <tex>y</tex> и избежав отступа по тексту (смотри рисунок ниже). |
+ | |||
+ | |||
+ | [[Файл:Apostolico-Crochemore-Shifts.png]] | ||
+ | |||
Пусть теперь <tex>l {{=}} 0</tex>, если <tex>x = c ^ m</tex> и <tex>c \in \Sigma</tex>, иначе <tex>l</tex> равно позиции первого элемента, который не равен <tex>x[0]</tex> (<tex>x {{=}} a ^ l bu</tex>, где <tex>a</tex> и <tex>b \in \Sigma</tex>, а <tex>u \in \Sigma^*</tex> и <tex>a \neq b</tex>). На каждой итерации алгоритма мы выполняем сравнения с шаблоном в следующем порядке: <tex>l, l + 1, \ldots , m - 2, m - 1, 0, 1, \ldots , l - 1</tex>. | Пусть теперь <tex>l {{=}} 0</tex>, если <tex>x = c ^ m</tex> и <tex>c \in \Sigma</tex>, иначе <tex>l</tex> равно позиции первого элемента, который не равен <tex>x[0]</tex> (<tex>x {{=}} a ^ l bu</tex>, где <tex>a</tex> и <tex>b \in \Sigma</tex>, а <tex>u \in \Sigma^*</tex> и <tex>a \neq b</tex>). На каждой итерации алгоритма мы выполняем сравнения с шаблоном в следующем порядке: <tex>l, l + 1, \ldots , m - 2, m - 1, 0, 1, \ldots , l - 1</tex>. |
Версия 16:46, 5 марта 2016
Алгоритм Апостолико-Крочемора (англ. Apostolico-Crochemore algorithm) - вариация Алгоритма Бойера-Мура.
Содержание
Описание алгоритма
Нам даны:
— текст, — образец, , .Для начала рассмотрим ситуацию, когда мы сравниваем наш образец с
. Предположим, что первое несовпадение произойдет между и при . Тогда и . Когда сдвиг возможен, разумно ожидать, что префикс шаблона совпадет c некоторым суффиксом . Более того, если мы хотим избежать несовпадения при сдвиге, то нужно, чтобы символ, следующий за префиксом в шаблоне, не совпадал с . Такой наибольший префикс называется помеченным бордером строки .
Определение: |
помеченный бордер (англ. tagged border) строки | — строка .
Введем обозначение: пусть — длина наибольшего бордера для за которым следует символ и если нет такого помеченного бордера, где ( ). Затем, после сдвига, сравнение можно продолжить между символами и не потеряв никакого вхождения в и избежав отступа по тексту (смотри рисунок ниже).
Пусть теперь , если и , иначе равно позиции первого элемента, который не равен ( , где и , а и ). На каждой итерации алгоритма мы выполняем сравнения с шаблоном в следующем порядке: .
Во время поиска вхождений мы рассматриваем данную тройку
где:- шаблон сравнивается с
- и
- и
Вначале инициализируем эту тройку
. Теперь опишем, как по уже вычисленной тройке перейти к следующей. Возможны три случая в зависимости от значения :-
- Если , тогда следующая тройка .
- Если , тогда следующая тройка .
:
-
- Если , тогда следующая тройка .
- Если
- Если , тогда следующая тройка .
- Если , тогда следующая тройка .
, тогда возможны два случая в зависимости от значения :
-
- Если и , тогда следующая тройка .
- Иначе либо и , либо . Если , то вхождение в найдено. В обоих случаях следующая тройка вычисляется, как в случае .
:
Псевдокод
void getT(string x, int t[]): int i = 0 int j = t[0] = -1 while i < x.size() while j > -1 and x[i] != x[j] j = t[j] i++ j++ if x[i] == x[j] t[i] = t[j] else t[i] = j void aG(string x, string y): int l, t[x.size()] //предподсчетвычисление массива getT(x, t) for l = 1; x[l - 1] == x[l]; l++ if l == x.size() l = 0 //поиск вычисление позиций вхождения в int i = l int j = 0 int k = 0 while j <= y.size() - x.size() while i < x.size() and x[i] == y[i + j] ++i if i >= x.size() while k < l and x[k] == y[j + k] ++k if k >= l OUTPUT(j) j += i - t[i] if i == l k = max(0, k - 1) else if t[i] <= l k = max(0, t[i]) i = l else k = l i = t[i] i = t[i]
Асимптотика алгоритма
Этап предподсчета, а именно вычисление массива
и переменной занимает времени и константное количество памяти. Этап поиска занимает времени, более того, алгоритм в худшем случае выполнит сравнений.