Сложностные классы — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (1.1.1.2 поправлен tex на переменных (теперь на всех))
(1.1.1.4 программы в определениях заменены на машины тьюринга)
Строка 4: Строка 4:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>\mathrm{T}(p,x)</tex> — время работы программы <tex>p</tex> на входе <tex>x</tex>.
+
<tex>\mathrm{T}(m,x)</tex> — время работы [[Машина_Тьюринга | машины Тьюринга]] <tex>m</tex> на входе <tex>x</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>\mathrm{S}(p,x)</tex> — объем памяти, требуемый программе <tex>p</tex> для выполнения на входе <tex>x</tex>.
+
<tex>\mathrm{S}(m,x)</tex> — объем памяти, требуемый машине Тьюринга <tex>m</tex>, для выполнения на входе <tex>x</tex>.
 
}}
 
}}
  
Строка 14: Строка 14:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>\mathrm{DTIME}(f(n))</tex> класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(p,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
+
<tex>\mathrm{DTIME}(f(n))</tex> --- класс языков <tex>L</tex>, для которых существует детеминированная машина Тьюринга <tex>m</tex> такая, что <tex>L(m) = L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(m,x) \le f(n)</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
 
}}
 
}}
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>\mathrm{DSPACE}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{S}(p,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
+
<tex>\mathrm{DSPACE}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует детерминированная машина Тьюринга <tex>m</tex> такая, что <tex>L(m)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{S}(m,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
 
}}
 
}}
 +
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Строка 33: Строка 34:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>\mathrm{NTIME}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует недетерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(p,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
+
<tex>\mathrm{NTIME}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует машина Тьюринга <tex>m</tex> такая, что <tex>L(m)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(m,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
 
}}
 
}}
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>\mathrm{NSPACE}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует недетерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{S}(p,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
+
<tex>\mathrm{NSPACE}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует недетерминированная машина Тьюринга <tex>m</tex> такая, что <tex>L(m)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{S}(m,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>).
 
}}
 
}}
  
 
[[Категория: Теория сложности]]
 
[[Категория: Теория сложности]]

Версия 00:58, 10 марта 2016

Определения

В основных понятиях теории сложности используются такие величины, как время работы и объем затрачиваемой памяти.

Определение:
[math]\mathrm{T}(m,x)[/math] — время работы машины Тьюринга [math]m[/math] на входе [math]x[/math].


Определение:
[math]\mathrm{S}(m,x)[/math] — объем памяти, требуемый машине Тьюринга [math]m[/math], для выполнения на входе [math]x[/math].


Для того, чтобы дать определения многим сложностным классам, понадобится определить такие классы, как [math]\mathrm{DTIME}[/math] и [math]\mathrm{DSPACE}[/math] (префикс [math]\mathrm{D}[/math] соответствует детерминизму).

Определение:
[math]\mathrm{DTIME}(f(n))[/math] --- класс языков [math]L[/math], для которых существует детеминированная машина Тьюринга [math]m[/math] такая, что [math]L(m) = L[/math] и для любого [math]x[/math] из [math]L[/math] выполнено [math]\mathrm{T}(m,x) \le f(n)[/math] (здесь [math]n[/math] — длина [math]x[/math]).


Определение:
[math]\mathrm{DSPACE}(f(n))[/math] — класс языков [math]L[/math], для которых существует детерминированная машина Тьюринга [math]m[/math] такая, что [math]L(m)=L[/math] и для любого [math]x[/math] из [math]L[/math] выполнено [math]\mathrm{S}(m,x) = O(f(n))[/math] (здесь [math]n[/math] — длина [math]x[/math]).


Определение:
[math]\mathrm{TS}(f,g)[/math] — класс языков [math]L[/math], для которых существует детерминированная программа [math]p[/math] такая, что [math]L(p)=L[/math] и для любого [math]x[/math] из [math]L[/math] выполнено [math]\mathrm{T}(p,x) = O(f(n))[/math] и [math]\mathrm{S}(p,x) = O(g(n))[/math], где [math]x[/math] — длина входа.


Аналогичным образом определяются классы [math]\mathrm{NSPACE}[/math] и [math]\mathrm{NTIME}[/math] (префикс [math]\mathrm{N}[/math] соответствует недетерминизму).

Определение:
Недетерминированная машина Тьюринга (НМТ) — машина Тьюринга, управляющее устройство которой представляет собой недетерминированный конечный автомат, то есть из каждого состояния может быть несколько переходов по одному и тому же символу на входной ленте.


Определение:
[math]\mathrm{NTIME}(f(n))[/math] — класс языков [math]L[/math], для которых существует машина Тьюринга [math]m[/math] такая, что [math]L(m)=L[/math] и для любого [math]x[/math] из [math]L[/math] выполнено [math]\mathrm{T}(m,x) = O(f(n))[/math] (здесь [math]n[/math] — длина [math]x[/math]).


Определение:
[math]\mathrm{NSPACE}(f(n))[/math] — класс языков [math]L[/math], для которых существует недетерминированная машина Тьюринга [math]m[/math] такая, что [math]L(m)=L[/math] и для любого [math]x[/math] из [math]L[/math] выполнено [math]\mathrm{S}(m,x) = O(f(n))[/math] (здесь [math]n[/math] — длина [math]x[/math]).