Приближение непрерывной функции полиномами на отрезке — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Доказана теорема Бернштейна, осталось чуть-чуть, помогите кто-нибудь =))
(+доказательство леммы)
Строка 3: Строка 3:
 
== Постановка задачи ==
 
== Постановка задачи ==
  
В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный зарактер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома:
+
В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный характер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома:
 
:<tex>f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)</tex>
 
:<tex>f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)</tex>
 
:<tex>f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) </tex><tex dpi = "160">+ \frac{f^{(n + 1)}(c_x)}{(n + 1)!}</tex><tex> \cdot \omega_n(x)</tex>
 
:<tex>f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) </tex><tex dpi = "160">+ \frac{f^{(n + 1)}(c_x)}{(n + 1)!}</tex><tex> \cdot \omega_n(x)</tex>
Строка 9: Строка 9:
 
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.
 
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.
  
Можно поставить иную задачу, которая является намного более сложной: пусть функция <tex>f</tex> непрерывна на отрезке <tex>[a; b]</tex>. Существует ли <tex>\forall \varepsilon > 0</tex> некоторый полином <tex>P</tex> (неважно, какой степени) такой, что <tex>\forall x \in [a; b] \Rightarrow |f(x) - P(x)| < \varepsilon</tex>?
+
Можно поставить иную задачу, которая является намного более сложной: пусть функция <tex>f</tex> непрерывна на отрезке <tex>[a; b]</tex>. Существует ли <tex>\forall \varepsilon > 0</tex> некоторый полином <tex>P</tex> (неважно, какой степени) такой, что <tex>\forall x \in [a; b]: \ |f(x) - P(x)| < \varepsilon</tex>?
  
 
Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.
 
Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.
Строка 43: Строка 43:
  
 
Выше мы доказали, что <tex>\sum\limits_{k=0}^n P_{n,k}(x) = 1</tex>, поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности:
 
Выше мы доказали, что <tex>\sum\limits_{k=0}^n P_{n,k}(x) = 1</tex>, поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности:
:<tex>\sum\limits_{k = 0}^n P_{n, k}(x)\omega(f, \left|x - \frac kn\right|) \le \sum\limits_{k = 0}^n P_{n, k}(x)\omega^*(f \left|x - \frac kn\right|) \le</tex> (по [[Выпуклые функции#Неравенство Йенсена|неравенству Йенсена]]) <tex>\omega^*\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right) \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex>
+
:<tex>\sum\limits_{k = 0}^n P_{n, k}(x)\omega(f, \left|x - \frac kn\right|) \le \sum\limits_{k = 0}^n P_{n, k}(x)\omega^*(f, \left|x - \frac kn\right|) \le</tex> (по [[Выпуклые функции#Неравенство Йенсена|неравенству Йенсена]]) <tex>\omega^*\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right) \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex>
  
 
Итак, <tex>|f(x) - B_n(f, x)|    \le      2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex>. Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности).
 
Итак, <tex>|f(x) - B_n(f, x)|    \le      2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex>. Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности).
Строка 73: Строка 73:
  
 
Вернемся к свертыванию суммы:  
 
Вернемся к свертыванию суммы:  
:<tex>\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 C_n^k x^k (1-x)^{n-k} = \frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex>
+
:<tex>\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 C_n^k x^k (1-x)^{n-k} =</tex>(раскрывая квадрат и подставляя <tex>p</tex> и <tex>q</tex>)<tex>\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex>
 
Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что <tex>k^2 = k(k-1) + k</tex>.
 
Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что <tex>k^2 = k(k-1) + k</tex>.
 
:<tex>\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex> <tex> = \frac 1{n^2}(n^2 p^2 \cdot 1 - 2np \cdot np + np + n(n-1)p^2) = </tex> <tex dpi = "130">\frac{np - np^2}{n^2} = \frac{pq}n = \frac{x(1-x)}n</tex>, ч. т. д.
 
:<tex>\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex> <tex> = \frac 1{n^2}(n^2 p^2 \cdot 1 - 2np \cdot np + np + n(n-1)p^2) = </tex> <tex dpi = "130">\frac{np - np^2}{n^2} = \frac{pq}n = \frac{x(1-x)}n</tex>, ч. т. д.
Строка 80: Строка 80:
 
{{Лемма
 
{{Лемма
 
|statement=<tex>|f(x)-B_n(f, x)| \le 2 \omega(f, \frac 1{2 \sqrt n})</tex>
 
|statement=<tex>|f(x)-B_n(f, x)| \le 2 \omega(f, \frac 1{2 \sqrt n})</tex>
 +
|proof=
 +
Так как <tex>\omega(t)</tex> возрастает и <tex>\sqrt{\frac{x(1 - x)}{n}} \leq \sqrt{\frac1{4n}} = \frac1{2\sqrt{n}}</tex>(из <tex>x(1 - x) \leq \frac14 </tex>), можно в неравенстве <tex>|f(x) - B_n(x)| \leq 2\omega(f, \sqrt{\frac{x(1 -x)}{n}})</tex> заменить <tex>\sqrt{\frac{x(1 - x)}{n}}</tex> на <tex>\frac1{2\sqrt{n}}</tex>, получив требуемое.
 
}}
 
}}
  
Строка 87: Строка 89:
  
 
}}
 
}}
 +
 +
{{Теорема
 +
|statement=
 +
Пусть функция <tex>f</tex> непрерывна на отрезке <tex>[a; b]</tex>.
 +
Тогда <tex>\forall \varepsilon > 0\ \exists B_n \forall x \in [0; 1]: |f(x) - B_n(f, x)| < \varepsilon</tex>
 +
|proof=
 +
{{TODO|t=Доказательство}}
 +
}}
 +
 
[[Категория:Математический анализ 1 курс]]
 
[[Категория:Математический анализ 1 курс]]

Версия 11:04, 4 декабря 2010

Эта статья находится в разработке!

Постановка задачи

В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный характер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома:

[math]f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)[/math]
[math]f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) [/math][math]+ \frac{f^{(n + 1)}(c_x)}{(n + 1)!}[/math][math] \cdot \omega_n(x)[/math]

Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.

Можно поставить иную задачу, которая является намного более сложной: пусть функция [math]f[/math] непрерывна на отрезке [math][a; b][/math]. Существует ли [math]\forall \varepsilon \gt 0[/math] некоторый полином [math]P[/math] (неважно, какой степени) такой, что [math]\forall x \in [a; b]: \ |f(x) - P(x)| \lt \varepsilon[/math]?

Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.

Заметим, что непрерывность функции является необходимым условием. Действительно, пусть [math]f[/math] такова, что [math]\forall \varepsilon \gt 0[/math] полином найдётся. Покажем, что [math]f[/math] необходимо непрерывна:

[math]\forall \varepsilon \gt 0[/math] есть полином [math]P[/math], "обслуживающий" [math]\varepsilon[/math] на всём отрезке.
[math]|f(x + \Delta x) - f(x)| \le |f(x + \Delta x) - P(x + \Delta x)| + |f(x) - P(x)| + |P(x + \Delta x) - P(x)| \le 2 \varepsilon + |P(x + \Delta x) - P(x)|[/math].

Но полином непрерывен, а значит, [math]\forall \varepsilon \gt 0 \ \exists \delta \gt 0: |\Delta x| \lt \delta \Rightarrow |P(x + \Delta x) - P(x)| \lt \varepsilon[/math].

Тогда [math]\forall \varepsilon \gt 0 \ \exists \delta \gt 0: |\Delta x| \lt \delta \Rightarrow |f(x + \Delta x) - f(x)| \lt 3 \varepsilon[/math], то есть, [math]f[/math] непрерывна в точке [math]x[/math].

Положительный ответ на поставленный вопрос впервые был дан Вейерштрассом.

Теорема о существовании искомого полинома

Теорема (Вейерштрасс):
Пусть функция [math]f[/math] - непрерывна на [math][a; b][/math]. Тогда [math]\forall \varepsilon \gt 0 \ \exists P(x)[/math] - полином, такой, что [math]\forall x \in [a; b] \Rightarrow |f(x) - P(x)| \lt \varepsilon[/math]
Доказательство:
[math]\triangleright[/math]

Докажем сначала теорему Бернштейна, рассматривающую только функции, непрерывные на [math][0; 1][/math]. Рассмотрим такую функцию [math]f(x)[/math]. Определим полиномы:

[math]B_n(f, x) = \sum\limits_{k = 0}^{n}f\left(\frac kn \right)C_n^k x^k (1 - x)^{n - k}[/math], которые называются полиномами Бернштейна функции [math]f[/math].

Заметим, что [math]\sum\limits_{k = 0}^{n} C_n^k x^k (1 - x)^{n - k} = \left[ x + (1 - x) \right ] ^ n = 1, \qquad \forall x \in \mathbb{R}[/math].

Далее, для сокращения записи положим [math]P_{n, k}(x) = C_n^k x^k (1 - x)^{n - k}[/math].

[math]f(x) = \sum\limits_{k = 0}^{n} f(x) P_{n, k}(x), \qquad f(x) - B_n(f, x) = \sum\limits_{k = 0}^{n}\left(f(x) - f \left( \frac k n \right ) \right ) P_{n, k}(x)[/math].
[math]\forall x', x'' \in [0; 1] \Rightarrow |f(x'')-f(x')| \le \omega(f, |x''-x'|)[/math], где [math]\omega(f, x)[/math] - модуль непрерывности функции [math]f[/math].
[math]|f(x) - B_n(f, x)| \le \sum\limits_{k = 0}^{n} \left |f(x) - f\left ( \frac k n \right ) \right | P_{n, k}(x) \le \sum\limits_{k = 0}^n P_{n, k}(x)\omega(f, \left|x - \frac kn\right|)[/math].

Выше мы доказали, что [math]\sum\limits_{k=0}^n P_{n,k}(x) = 1[/math], поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности:

[math]\sum\limits_{k = 0}^n P_{n, k}(x)\omega(f, \left|x - \frac kn\right|) \le \sum\limits_{k = 0}^n P_{n, k}(x)\omega^*(f, \left|x - \frac kn\right|) \le[/math] (по неравенству Йенсена) [math]\omega^*\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right) \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)[/math]

Итак, [math]|f(x) - B_n(f, x)| \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)[/math]. Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности). По неравенству Коши для сумм

[math]\sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x) = \sum\limits_{k = 0}^n \left|x - \frac kn\right| \sqrt{P_{n, k}(x)}\cdot \sqrt{P_{n, k}(x)}[/math] [math]\le \sqrt{\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 P_{n, k}(x)} \cdot \sqrt{\sum\limits_{k = 0}^n P_{n, k}(x)} = \sqrt{\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 P_{n, k}(x)}[/math]

Вставим полученное неравенство в оценку: [math]|f(x) - B_n(f, x)| \le 2\omega \left( f, \sqrt{\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 P_{n, k}(x)}\,\right)[/math] (все эти преобразования были нужны, потому что суммы с модулем трудно сворачиваются). Покажем теперь с помощью метода производящих функций, что [math]\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 P_{n, k}(x) = \frac{x(1-x)}n[/math].

Для этого рассмотрим полином [math]\varphi(t) = \sum\limits_{k=0}^n a_k t^k[/math], где [math]{a_k}[/math] - произвольная конечная числовая последовательность (такой полином называют производящей функцией). Заметим, что

[math]\varphi'(t) = \sum\limits_{k=1}^n k a_k t^{k-1}[/math]
[math]\varphi''(t) = \sum\limits_{k=2}^n k(k-1) a_k t^{k-2}[/math]

и поэтому

[math]\varphi(1) = \sum\limits_{k=0}^n a_k[/math]
[math]\varphi'(1) = \sum\limits_{k=0}^n k a_k[/math]
[math]\varphi''(1) = \sum\limits_{k=0}^n k(k-1) a_k[/math] (в двух последних суммах слагаемые при [math]k[/math], равных [math]0[/math] или [math]1[/math], обращаются в [math]0[/math], поэтому суммы определены корректно).

Положим теперь [math]a_k = P_{n,k}(x)[/math] и рассмотрим производящую функцию

[math]\varphi(t) = \sum\limits_{k=0}^n P_{n,k}(x) t^k = \sum\limits_{k=0}^n C_n^k (xt)^k (1-x)^{n-k} = (xt + 1 - x)^n[/math]

С целью упрощения дальнейших выкладок обозначим [math]p = x, \, q = 1 - x, \, p + q = 1[/math].

[math]\varphi(t) = (pt + q)^n[/math]
[math]\varphi'(t) = np(pt + q)^{n-1}[/math]
[math]\varphi''(t) = n(n-1)p^2(pt + q)^{n-2}[/math]

Т. к. [math]p + q = 1[/math], то

[math]\varphi(1) = 1, \varphi'(1) = np, \, \varphi''(1) = n(n-1)p^2[/math]

Вернемся к свертыванию суммы:

[math]\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 C_n^k x^k (1-x)^{n-k} =[/math](раскрывая квадрат и подставляя [math]p[/math] и [math]q[/math])[math]\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)[/math]

Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что [math]k^2 = k(k-1) + k[/math].

[math]\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)[/math] [math] = \frac 1{n^2}(n^2 p^2 \cdot 1 - 2np \cdot np + np + n(n-1)p^2) = [/math] [math]\frac{np - np^2}{n^2} = \frac{pq}n = \frac{x(1-x)}n[/math], ч. т. д.

Для [math]x \in [0; 1] \quad x(1-x) \le \frac 14[/math]. Учитывая то, что [math]\omega(t)[/math] возрастает, окончательно получаем:

Лемма:
[math]|f(x)-B_n(f, x)| \le 2 \omega(f, \frac 1{2 \sqrt n})[/math]
Доказательство:
[math]\triangleright[/math]
Так как [math]\omega(t)[/math] возрастает и [math]\sqrt{\frac{x(1 - x)}{n}} \leq \sqrt{\frac1{4n}} = \frac1{2\sqrt{n}}[/math](из [math]x(1 - x) \leq \frac14 [/math]), можно в неравенстве [math]|f(x) - B_n(x)| \leq 2\omega(f, \sqrt{\frac{x(1 -x)}{n}})[/math] заменить [math]\sqrt{\frac{x(1 - x)}{n}}[/math] на [math]\frac1{2\sqrt{n}}[/math], получив требуемое.
[math]\triangleleft[/math]

По свойству модуля непрерывности

[math]\lim\limits_{n \to +0} \omega(f, h) = 0[/math], т. е. [math]\forall \varepsilon \gt 0 \, \exists \delta : 0 \lt h \le \delta \Rightarrow \omega(f, h) \le \varepsilon[/math].
Т. к. [math]\lim\limits_{n \to + \infty}\frac 1{2 \sqrt n} = 0[/math], то [math]\exists N \in \mathbb N: \frac 1{2 \sqrt N} \le \delta[/math]. Отсюда по лемме [math]|f(x) - B_N(f, x)| \le 2 \omega(f, \frac 1{2 \sqrt N}) \le 2 \varepsilon[/math] (по выбору [math]N[/math] и [math]\varepsilon[/math]) и теорема Бернштейна доказана.
[math]\triangleleft[/math]
Теорема:
Пусть функция [math]f[/math] непрерывна на отрезке [math][a; b][/math]. Тогда [math]\forall \varepsilon \gt 0\ \exists B_n \forall x \in [0; 1]: |f(x) - B_n(f, x)| \lt \varepsilon[/math]
Доказательство:
[math]\triangleright[/math]
TODO: Доказательство
[math]\triangleleft[/math]