Rake-Compress деревья — различия между версиями
| Строка 116: | Строка 116: | ||
lastUpdateTime[i] = 0 | lastUpdateTime[i] = 0 | ||
cells[i] = [] | cells[i] = [] | ||
| + | |||
| + | Кроме запросов о структуре леса, Rake-Compress деревья можно использовать для подсчета значений некоторых функций. Например, каждой вершине можно сопоставить некоторое значение и узнавать, чему равна сумма значений всех вершин, которые находятся в поддереве. | ||
| + | Для этого в клетках таблицы Rake-Compress дерева необходимо хранить не только состояние вершины, но и значение функции, посчитанной на части дерева, которое уже было сжато в вершину. Если функция является аддитивной, то ее пересчет аналогичен пересчету множества детей вершины. Так, если некоторая вершина сжимается к родителю, то в соответствующей родителю клетке необходимо обновить значение функции. При добавлении и удалении ребер необходимо в изменившихся клетках пересчитывать значение функции. | ||
===Построение=== | ===Построение=== | ||
| Строка 204: | Строка 207: | ||
==Возможность параллельного построения== | ==Возможность параллельного построения== | ||
Операции <tex>\mathrm{Rake}</tex> и <tex>\mathrm{Compress}</tex> можно выполнять параллельно для всех вершин. Если предположить, что множество детей можно пересчитывать за <tex>O(1)</tex>, то Rake-Compress дерево можно построить за <tex>O(\log{n})</tex> в модели PRAM в случае наличия <tex>\Omega(n)</tex> процессоров. | Операции <tex>\mathrm{Rake}</tex> и <tex>\mathrm{Compress}</tex> можно выполнять параллельно для всех вершин. Если предположить, что множество детей можно пересчитывать за <tex>O(1)</tex>, то Rake-Compress дерево можно построить за <tex>O(\log{n})</tex> в модели PRAM в случае наличия <tex>\Omega(n)</tex> процессоров. | ||
| − | |||
| − | |||
==Применения== | ==Применения== | ||
Версия 17:12, 1 мая 2016
Задача, которая решается с помощью динамических деревьев (англ. dynamic tree), формулируется следующим образом. Необходимо поддерживать лес деревьев и выполнять на нем следующие операции:
- добавить ребро . Вершина должна быть корнем некоторого дерева. Вершины и должны находиться в разных деревьях,
- удалить ребро . Ребро должно присутствовать в графе,
- некоторый запрос относительно структуры дерева.
Примером последней операции может быть запрос "достижима ли вершина из ?", "сколько ребер на кратчайшем пути из в ?" или "какова сумма номеров вершин, которые находятся в поддереве вершины ?". Можно легко реализовать структуру данных, которая будет выполнять данные операции за время , где — количество вершин в графе. Динамические деревья нужны для того, чтобы обрабатывать запросы более эффективно. В частности, все предложенные операции возможно выполнять за время .
Содержание
Описание
Rake-Compress Tree — структура данных, которая хранит лес деревьев и поддерживает следующие операции:
- — все листья дерева сжимаются к своим родителям,
- — выбирается и объединяется некоторое множество несмежных друг с другом вершин, имеющих ровно одного сына.
Входными данными для алгоритма Rake-Compress является лес корневых деревьев. К нему поочередно применяются операции и до тех пор, пока существует хотя бы одна живая вершина.
Во время каждой из этих операций выбирается некоторое множество попарно несмежных вершин, которое сжимается к своим родителям. После каждой операции лес сохраняется в специальном виде, что в дальнейшем дает возможность отвечать на запросы о структуре леса.
Современная реализация Rake-Compress деревьев была предложена Р. А. Тарьяном и Р. Ф. Вернеком.
Рассмотрим, как изменяется количество вершин в дереве после применения к нему операций и . Разобьём все вершины дерева на три группы: входящая степень которых равна нулю, одному и больше одного. Обозначим их количество за и соответственно.
| Лемма (1): |
. |
| Доказательство: |
|
Докажем по индукции по высоте дерева. |
| Лемма (2): |
После применения операций и к лесу, математическое ожидание количества вершин в нём не превосходит от их исходного числа. |
| Доказательство: |
|
Математическое ожидание количества удаленных вершин (так как все листья будут удалены после операции , а каждая вершина, у которой ровно один сын, будет удалена с вероятностью после операции ). Из предыдущей леммы получаем: |
| Теорема: |
Математическое ожидание количества операций и , которые будут выполнены до полного сжатия дерева, равно , где — общее количество вершин. |
| Доказательство: |
| Из леммы 2 известно, что после каждой итерации применения операций и число вершин в среднем уменьшается в константное число раз. Значит, количество итераций в среднем ограничено . |
Реализация
Хранение
Для того, чтобы отвечать на запросы относительно структуры леса необходимо сохранить информацию о том, как происходил процесс сжатия леса. Для этого будем хранить таблицу, в каждой строке которой записана информация о структуре леса после выполнения операций. Каждая клетка таблицы будет хранить информацию о вершине после выполнения операций и . Из информации будем сохранять родителя вершины, множество детей и метку, сжата ли вершина.
Пример таблицы для следующей последовательности операций:
| Шаг | Операция | ||||
|---|---|---|---|---|---|
| 4 | Родитель: — Дети: |
— | — | — | |
| 3 | Родитель: — Дети: |
— | Родитель: Дети: |
— | |
| 2 | Родитель: — Дети: |
Родитель: Дети: |
Родитель: Дети: |
— | |
| 1 | Родитель: — Дети: |
Родитель: Дети: |
Родитель: Дети: |
Родитель: Дети: |
Для того, чтобы выбирать множество вершин для применения операции будем использовать следующий метод: для каждой вершины с помощью генератора псевдослучайных чисел выберем случайный бит. Вершина добавляется в множество, если у нее ровно один ребенок, она не является корнем и биты, которые были сгенерированы для нее, ребенка и родителя равны 0, 1 и 1 соответственно.
Рассмотрим более подробно, как необходимо хранить клетки таблицы Rake-Compress дерева. Для вершины необходимо сохранить ее родителя, а также множество детей. Для того, чтобы обрабатывать каждую клетку таблицы за , нужно производить операции с множеством детей за .
На самом деле, множество детей хранится для того, чтобы определять, можно ли сжать вершину. Если детей у вершины больше одного, то ее точно нельзя сжать. Если у неё нет детей, то ее можно сжать только во время операции . Чтобы определить можно ли применить операцию к вершине, в том случае, когда у нее один ребёнок, нужно узнать, как бит был сгенерирован на текущей итерации для ребёнка. Для этого необходимо знать номер вершины-ребёнка. Значит, необходимо уметь определять, кто находится в множестве только в том случае, если в нём не более одного элемента. Поэтому, всю информацию о множестве можно хранить с помощью двух величин — хранить количество элементов в множестве и сумму их номеров.
Если вершина является корнем, то в качестве ее родителя будем хранить ее номер. Кроме того необходимо хранить изменения, которые произойдут с клеткой при переходе к следующему слою: будем хранить, кто должен стать новым родителем, на сколько изменится количество детей, а также как изменится сумма их номеров. Все это необходимо для того, чтобы обрабатывать каждую изменившуюся клетку за .
Псевдокод хранения клетки таблицы:
struct Cell:
int id, parent, cntChild, sumChild
int newParent, diffCntChild, diffSumChild
func applyChanges():
parent = newParent
sumChild += diffSumChild
cntChild += diffCntChild
diffCntChild = diffSumChild = 0
func addChild(v):
diffCntChild++
diffSumChild += v
func removeChild(v):
diffCntChild--
diffSumChild -= v
Для хранения Rake-Compress дерева будем использовать следующие данные:
- — список клеток, которые ей соответствуют, для каждой вершины,
- — генератор псевдослучайных чисел,
- — счётчик количества примененных операций по изменению структуры леса,
- — массив, в котором для каждой вершины запишем номер последней операции, при обработки которой была изменена хотя бы одна клетка, которая соответствуют вершине: это позволит эффективно узнавать, была ли вершина уже помечена как поменявшаяся или нет.
struct RCTree(n: int):
rand = RandBitsGenerator()
time = 0
for i = 0 to n
lastUpdateTime[i] = 0
cells[i] = []
Кроме запросов о структуре леса, Rake-Compress деревья можно использовать для подсчета значений некоторых функций. Например, каждой вершине можно сопоставить некоторое значение и узнавать, чему равна сумма значений всех вершин, которые находятся в поддереве. Для этого в клетках таблицы Rake-Compress дерева необходимо хранить не только состояние вершины, но и значение функции, посчитанной на части дерева, которое уже было сжато в вершину. Если функция является аддитивной, то ее пересчет аналогичен пересчету множества детей вершины. Так, если некоторая вершина сжимается к родителю, то в соответствующей родителю клетке необходимо обновить значение функции. При добавлении и удалении ребер необходимо в изменившихся клетках пересчитывать значение функции.
Построение
Рассмотрим, как работает алгоритм построения Rake-Compress дерева. Будем строить таблицу по строкам. В каждый момент будем хранить множество вершин, которые еще не были сжаты, и перестраивать следующий слой. Также будем делать операции и одновременно. Чтобы определить, нужно ли сжимать вершину, воспользуемся следующим алгоритмом:
bool shouldRemoveVertex(c: Cell, rand, layer: int):
if c.cntChild == 0
return true
if c.cntChild > 1 or c.parent == c.id
return false
if getCellForVertex(c.sumChild).cntChild == 0
return false
if rand.getBit(c.id, layer) == 0 and rand.getBit(c.sumChild, layer) == 1 and rand.getBit(c.parent, layer) == 1:
return true
return false
Таким образом, алгоритм построения дерева выглядит следующим образом:
func build(parent: int[]):
alive =
layer = 0
for i = 0 to n
cells[i].add(Cell(parent[i]))
while
nextAlive =
for
c = getCellForVertex(v) // получить клетку таблицы, соответствующую вершине
if shouldRemoveVertex(c, rand, layer)
if c.cntChild == 1
getCellForVertex(c.sumChild).newParent = c.parent
getCellForVertex(c.parent).addChild(c.sumChild)
if c.parent v
getCellForVertex(c.parent).remove(v)
else
nextAlive.add(v)
alive = nextAlive
for
newCell = getCellForVertex(v).clone().appleChanges()
cells[v].add(newCell)
layer++
Операции удаления и добавления ребра
Как только некоторая вершина помечается как изменившаяся, отменим её действие на таблицу. А именно, найдем момент времени, когда вершина сжимается к родителю. Рассмотрим, какие вершины поменяются при сжатии данной. Это ее родитель (если он есть), а также сын (если он есть). Для каждой из этих вершин поменяем значения изменений, которые необходимо применить к состоянию. Также пометим, что эти вершины поменялись на этом слое. Для этого на каждом слое будем хранить список вершин, которые на нем поменялись. А перед тем как обрабатывать очередной слой будем добавлять в множество изменившихся вершин вершины из соответствующего списка. Кроме удаления эффекта от изменившихся вершин также необходимо и добавить правильный эффект. Для этого будем для каждой из из- менившихся вершин определять, как ее состояние меняется при переходе к следующему слою. Если вершина сжимается к ее родителю, то пометим родителя и ребенка (если он есть) и поменяем изменение, которое хранится в соответствующих клетках. А для пересчета состояния клеток воспользуемся значениями изменений, которые сохранены в клетках.
Рассмотрим, что происходит с таблицей при изменении одного ребра. Основная идея заключается в том, чтобы научится пересчитывать все изменения таблицы за время пропорциональное их количеству. Для этого будем эффективно поддерживать множество изменившихся клеток. В момент, когда вершина помечается, как изменившаяся, найдем, как она влияет на таблицу и отменим это влияние.
Для начала необходимо найти момент времени, когда вершина сжимается. В этот момент она влияет на не более чем две вершины. Изменим значения , и нужным образом. Также необходимо добавить эти вершины в множество изменившихся (в момент, когда будет обработан соответствующий слой). Поэтому, для каждого слоя еще будем хранить список вершин, которые должны быть помечены перед обработкой слоя.
Алгоритм обновления дерева:
func changeTree(: Edge): time = time + 1 affected = markAffected(u) // пусть из дерева было удалено ребро markAffected(v) cells[u].parent = u cells[v].cntChild-- cells[v].sumChild -= u layer = 0 while for markAffected(v) for c = getCellForVertex(v) if shouldRemoveVertex(v) cells[v].size = layer + 1 if c.cntChild == 1 getCellForVertex(c.sumChild).newParent = c.parent getCellForVertex(c.parent).addChild(c.sumChild) markAffected(c.sumChild) if c.parent v getCellForVertex(c.parent).removeChild(v) markAffected(c.parent) affected.remove(v) for newCell = getCellForVertex(v).clone().applyChanges() cells[v][layer + 1] = newCell layer++ func markAffected(v: int): if lastUpdateTime[v] == time return // вершина уже помечена lastUpdateTime[v] = time affected.add(v) removeEffectOfVertex(v) func removeEffectOfVertex(v: int): layer = cells[v].size c = cells[v][layer] if c.parent == v return cells[c].parent.removeChild(v) if c.cntChild == 1 cells[c.parent].addChild(c.sumChild) cells[c.sumChild].newParent = v
Возможность параллельного построения
Операции и можно выполнять параллельно для всех вершин. Если предположить, что множество детей можно пересчитывать за , то Rake-Compress дерево можно построить за в модели PRAM в случае наличия процессоров.
Применения
- Задача MST online: дан граф из вершин, в который добавляются новые рёбра. Необходимо поддерживать минимальный остовный лес для данного графа,
- Задача о максимальном потоке: в помощью динамических деревьев можно улучшить ассимптотику алгоритма Диница с до .
См. также
Источники информации
- Wikipedia — Parallel Tree Contraction
- Б. Ю. Минаев — Реализация динамических Rake-Compress деревьев в случае отсутствия ограничения на степени вершин
- G. L. Miller, J. H. Reif — Parallel Tree Contraction
- R. Werneck — Design and Analysis of Data Structures for Dynamic Trees