577
правок
Изменения
→Асимптотика
Для начала рассмотрим следующий вопрос: пусть <tex>U</tex> {{---}} множество работ, для которого существует расписание, в котором отсутствуют опаздывающие работы, пусть <tex>i</tex> {{---}} работа, не принадлежащая <tex>U</tex>, для которой выполняется неравенство <tex>d_i \leqslant d_j</tex>для любой <tex>j \in U</tex>. Можно ли построить расписание для множества <tex>V = U \cup \{i\}</tex>, в котором так же будут отсутствовать опаздывающие работы.<br>
Введем несколько обозначений. Вектора <tex>h</tex>, соответствующие множествам <tex>U</tex> и <tex>V</tex> обозначим как <tex>h^U</tex> и <tex>h^V</tex> соответственно. <tex>x(d_i)</tex> {{---}} количество временных интервалов <tex>t</tex> со свойствами
*<tex>d_i - m + 1 \leqslant t \leqslant d_i</tex>,
*<tex>h^U < m</tex>.
Будем говорить, что работы могут быть выполнены ''вовремя'', если для них существует расписание, в котором эти работы успевают выполниться без опозданий.