Участник:Dominica — различия между версиями
Dominica (обсуждение | вклад) (→Решение) |
Dominica (обсуждение | вклад) |
||
Строка 29: | Строка 29: | ||
<tex> | <tex> | ||
c_{ij} = | c_{ij} = | ||
− | \left \{\begin{array}{ll} f_i(t_j + 1), & r_i \ | + | \left \{\begin{array}{ll} f_i(t_j + 1), & r_i \leqslant t_i \\ |
\infty, & otherwise | \infty, & otherwise | ||
\end{array} \right. | \end{array} \right. | ||
Строка 43: | Строка 43: | ||
|statement= Существует оптимальное расписание <tex>S</tex> в котором все <tex>n</tex> задач распределены по всем временам <tex>t_i (i = 1\ldots n)</tex>, которые выбирает приведенный выше алгоритм. | |statement= Существует оптимальное расписание <tex>S</tex> в котором все <tex>n</tex> задач распределены по всем временам <tex>t_i (i = 1\ldots n)</tex>, которые выбирает приведенный выше алгоритм. | ||
|proof= Предположим, что в некоторое оптимальное расписание <tex>S</tex> входят времена <tex> t_1 \ldots t_j, </tex> где <tex> j < n</tex> и из всех возможных оптимальных расписаний мы возьмем то, у которого <tex>j</tex> будет максимально. | |proof= Предположим, что в некоторое оптимальное расписание <tex>S</tex> входят времена <tex> t_1 \ldots t_j, </tex> где <tex> j < n</tex> и из всех возможных оптимальных расписаний мы возьмем то, у которого <tex>j</tex> будет максимально. | ||
− | Из того, как в алгоритме выбирались значения для <tex>t_i</tex> следует, что <tex>t_{j + 1}</tex> {{---}} минимальное возможное время, большее <tex>t_j,</tex> | + | Из того, как в алгоритме выбирались значения для <tex>t_i</tex> следует, что <tex>t_{j + 1}</tex> {{---}} минимальное возможное время, большее <tex>t_j,</tex> в которое можно начать выполнять какое-нибудь из оставшихся заданий. Если во время <tex>t_{j+1}</tex> в расписании <tex>S</tex> не выполняется никакого задания, то какое-то задание, которое могло бы выполнится в момент времени <tex>t_{j+1}</tex> выполняется в <tex>S</tex> позднее. Значит оно может быть перемещено в нашем расписании <tex>S</tex> на время <tex>t_{j+1}</tex> без увеличения целевой функции. Таким образом, наше новое расписание тоже будет оптимальным. Получили противоречие с максимальностью <tex>j</tex>. Значит из всех оптимальных расписаний нам подходят только те, в которых <tex>j = n</tex>. |
}} | }} | ||
Версия 20:06, 12 мая 2016
Задача: |
|
Решение
Эта задача может быть решена сведением к решению задачи о назначениях. А именно, покажем, что решение задачи состоит в сопоставлении различным заданиям различных времен начала выполнения работы. Если сопоставляем работе время , то вклад в целевую функцию будет .
Далее будет показано, что при построении оптимального расписания нам нужно будет рассмотреть всего
различных времен начала работ. Следовательно, подобная задача может быть решена за .Поскольку
— монотонно неубывающие функции, то это значит, что в оптимальном расписании работы должны начинать исполняться как можно раньше. Первые самых ранних для начала исполнения времен могут быть вычислены следующим алгоритмом, в котором мы предполагаем, что все работы отсортированы по неубыванию времени появления := for =
Для того, чтобы найти оптимальное расписание, построим полный двудольный граф, в котором будут доли и ребра между ними:
Решив задачу о назначениях для данного графа, получим оптимальное расписание.
Доказательство корректности и оптимальности
Лемма: |
Существует оптимальное расписание в котором все задач распределены по всем временам , которые выбирает приведенный выше алгоритм. |
Доказательство: |
Предположим, что в некоторое оптимальное расписание Из того, как в алгоритме выбирались значения для входят времена где и из всех возможных оптимальных расписаний мы возьмем то, у которого будет максимально. следует, что — минимальное возможное время, большее в которое можно начать выполнять какое-нибудь из оставшихся заданий. Если во время в расписании не выполняется никакого задания, то какое-то задание, которое могло бы выполнится в момент времени выполняется в позднее. Значит оно может быть перемещено в нашем расписании на время без увеличения целевой функции. Таким образом, наше новое расписание тоже будет оптимальным. Получили противоречие с максимальностью . Значит из всех оптимальных расписаний нам подходят только те, в которых . |
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 73 - 78