Pintreepi1Lmax — различия между версиями
Zernov (обсуждение | вклад) |
Zernov (обсуждение | вклад) |
||
Строка 85: | Строка 85: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Данный алгоритм корректно решает задачу <tex>P \mid | + | Данный алгоритм корректно решает задачу <tex>P \mid Intree, p_{i} = 1 \mid L_{max}</tex> |
|proof= | |proof= | ||
Пусть <tex>L'_{max}</tex> {{---}} оптимальное значение. В таком случае, существует расписание, удовлетворяющее <tex>\max\limits_i \{C_i - d_i\} \leqslant L'_{max}</tex>, что эквивалетно выражению <tex>C_{i} \leqslant d_{i} + L'_{max}</tex> для <tex>i = 1 \dots n </tex>. По первой лемме расписание <tex>S</tex>, построенное для сдвинутых дат <tex>d_{i} + L'_{max}</tex> удовлетворяет данным выражениям. Таким образом, оно оптимально. Нетрудно заметить, что <tex>S</tex> идентично расписанию, построенному алгоритмом, т.к. <tex>(d_{i}+L'_{max})' = d'_{i} + L'_{max} </tex> для <tex>i = 1 \dots n </tex> | Пусть <tex>L'_{max}</tex> {{---}} оптимальное значение. В таком случае, существует расписание, удовлетворяющее <tex>\max\limits_i \{C_i - d_i\} \leqslant L'_{max}</tex>, что эквивалетно выражению <tex>C_{i} \leqslant d_{i} + L'_{max}</tex> для <tex>i = 1 \dots n </tex>. По первой лемме расписание <tex>S</tex>, построенное для сдвинутых дат <tex>d_{i} + L'_{max}</tex> удовлетворяет данным выражениям. Таким образом, оно оптимально. Нетрудно заметить, что <tex>S</tex> идентично расписанию, построенному алгоритмом, т.к. <tex>(d_{i}+L'_{max})' = d'_{i} + L'_{max} </tex> для <tex>i = 1 \dots n </tex> |
Версия 17:02, 15 мая 2016
Задача: |
Рассмотрим задачу на нахождение расписания:
|
Описание алгоритма
Идея
Все вершины хранятся в дереве (англ. Intree), которое имеет несколько корней и один лист.
Работы хранятся в дереве, состоящем из
вершин с фиктивной нулевой работой, которая является родителем тех вершин, у которых изначально его не было. В intree-дереве у одной вершины может быть два и более родителей. Решение задачи состоит из двух шагов: на первом шаге мы меняем сроки выполнения работ в соответствии с их очередностью.На первом шаге изменения сроков состоит в следующем: для всех
таких, что существует ребро из в будем менять на . На втором шаге работы расставляются в неубывающем порядке сроков.Первый шаг
Алгоритм изменения сроков:
deque = ii является листом while deque not empty i = stack.remove_first() for j j является предком i stack.add_last(j)
Лемма: |
Работа с новым сроком в расписании не имеет опозданий тогда и только тогда, когда она не имела опозданий с оригинальным сроком . |
Доказательство: |
: Т.к. , значит, если опозданий не было со значениями , их не будет и со значениями . : Пусть у нас были сроки и мы их заменили на в соответствии с приведенным алгоритмом.
|
Второй шаг
На втором этапе алгоритма работы сортируются в неубывающем порядке их дедлайнов. Предполагается, что работы занумерованы в соответствии с предыдущим пунктом, т.е.
, если .В переменной
хранится время, когда станок освободится.В массиве
хранится информация о максимальном времени завершении обработки родителя.Массив
хранит информацию о количестве работ, готовых к исполнению (находящихся в очереди) в момент времени .Массив
хранит информацию о начале выполнения работы .F = 0 for i = 1 .. n r[i] = 0 for t = 0 .. n c[t] = 0 for i = 1 .. n t = max(r[i], F) x[i] = t c[t] = c[t] + 1 if n[t] == m F = t + 1 j = s[i] r[j] = max (r[j], t + 1)
Расписание, сгенерированное этим алгоритмом имеет важное свойство: число заданий в очереди в любой момент времени
меньше, чем в момент . Действительно, пусть во время мы выполняем работ, и хотя бы работ готовы к выполению в момент времени . Но т.к. , значит каждой из работ предшествовала как минимум одна, поскольку у всех вершин, кроме корней, есть как минимум один предок. Значит, в момент времени исполнялось не менее работ, противоречие.Лемма: |
Если существует такое расписание, в котором ни одна из работ не будет выполнена с опозданием, то тогда это свойство сохранится в построенном данным алгоритмом расписании |
Доказательство: |
Предположим, что существует работа из расписания, построенного алгоритмом. В таком случае существует работа, которая опоздала по отношению к измененным срокам. Возьмем наименьшее такое, что . Пусть — наибольшее из удовлетворяющих условию Такое существует, потому что иначе работ с находятся в очереди до . Работа к ним не принадлежит, поскольку , а значит, что должны быть в очереди в момент времени и ни одна работа не должна опаздывать. Противоречие. Любая работа с и должна иметь предка, начавшего работать в момент времени . Теперь рассмотрим два случая:Первый случай: .
Второй случай: .
|
Теорема: |
Данный алгоритм корректно решает задачу |
Доказательство: |
Пусть | — оптимальное значение. В таком случае, существует расписание, удовлетворяющее , что эквивалетно выражению для . По первой лемме расписание , построенное для сдвинутых дат удовлетворяет данным выражениям. Таким образом, оно оптимально. Нетрудно заметить, что идентично расписанию, построенному алгоритмом, т.к. для
Источники информации
- Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 151-156 ISBN 978-3-540-69515-8